
SymPerf: Predicting Network Function Performance

Felix Rath, Johannes Krude, Jan Rüth, Daniel Schemmel,
Oliver Hohlfeld, Jó Á. Bitsch, Klaus Wehrle

Communication and Distributed Systems, RWTH Aachen University
{rath,krude,rueth,schemmel,hohlfeld,bitsch,wehrle}@comsys.rwth-aachen.de

ABSTRACT

The softwarization of networks provides a new degree of flexibil-
ity in network operation but its software components can result
in unexpected runtime performance and erratic network behav-
ior. This challenges the deployment of flexible software functions
in performance critical (core) networks. To address this challenge,
we present a methodology enabling the prediction of runtime per-
formance and testing of functional behavior of Network Functions.
Unlike traditional performance evaluation, e.g., testbed testing or
simulation, our methodology can characterize the Network Func-
tion performance for any possible workload only by code analysis.

CCS CONCEPTS

• Networks → Network performance analysis; Middle boxes /

network appliances; In-network processing; Programmable networks;

KEYWORDS

NFV, Symbolic Execution, Measurements, Reliability, Performance

ACM Reference Format:

Felix Rath, Johannes Krude, Jan Rüth, Daniel Schemmel, Oliver Hohlfeld, Jó
Á. Bitsch, Klaus Wehrle. 2017. SymPerf: Predicting Network Function Per-
formance. In Proceedings of SIGCOMM Posters and Demos ’17, Los Angeles,

CA, USA, August 22–24, 2017, 3 pages.
https://doi.org/10.1145/3123878.3131977

1 INTRODUCTION

Current research in SDN and NFV exemplifies the resurgence of
network softwarization and stands to fulfill the promise of active
networks by enabling flexible in-network processing for control
and data plane tasks. Contrasting this flexibility is 1) an erratic la-
tency being added to each flow that is now processed in software
rather than on dedicated, purpose-built hardware, and 2), a loss
in reliability, as software running on generic platforms is much
harder to test comprehensively. It is noteworthy that current imple-
mentations of even simple on-path Network Functions (NFs) face
both of these problems to unknown degrees.

To address this dual challenge, we present SymPerf, a methodol-
ogy that accurately predicts runtime and behavior of an NF purely
by automated reasoning about its implementation. SymPerf requires

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA

© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5057-0/17/08. . . $15.00
https://doi.org/10.1145/3123878.3131977

no testbed emulations for known workloads and can fully charac-
terize NF performance for any input—even for the rarest corner
case. This work seeks to create pre-deployment confidence in the
runtime behavior of NFs by working towards addressing the fol-
lowing questions that network operators face when designing and
deploying NFs:

Implementation quality: Does the NF lead to an unwanted
state, e.g., an infinite loop? Can unexpected input cause forbidden
behavior, such as buffer overflows?

Performance:Howmuch latency and jitter is added per packet?
Will the NF sustain line rate?What is the worst processing time for
the NF and when—state, sequence of packets—does it occur? How
are execution times distributed for a random, known or adversarial
workload? How many NFs can be executed on a single machine?

2 PREDICTING NF BEHAVIOR

Our approach aims to predict the performance of an NF from its
underlying source code, as illustrated in Fig. 1, beginning with enu-
merating all possible execution paths. In our scheme, we use Sym-
bolic Execution (SE) [2] in step 1 to generate a complete execution
tree. SE has already proven itself in the networking domain [3, 5]
and allows us to categorize all possible inputs in such a way that
each possible execution path maps to exactly one distinct input
category. Since SE originates from automated software testing, it
is also able to find a broad range of software defects, such as buffer
overflows. If a bug is found, the developer is given a test case trig-
gering the bug, to iterate on the NF (step 2).

Each path through the execution tree is necessarily also a pass
through the NF under scrutiny. Next, in step 3 , we walk the ex-
ecution tree generating one instruction chain per path, in effect
mapping each possible input category to its corresponding CPU
instruction chain. In order to calibrate our prediction for a target
platform, we perform microbenchmarks measuring the costs of in-
structions. Instead of measuring time durations, we use CPU cy-
cles, which are a metric independent of frequency scaling. During
the calibration, which has to be done once for each platform, like
our testbed running Linux on an Intel i7-870, we store the results
in a per platform instruction cost database (cf. Fig. 1, step 4). Note
that this is only done once per target.

Combining the NF instruction chains with the appropriate cali-
bration database (step 5), we can predict runtimes for each path.
This is already enough to find, e.g., the path that consumes the
most CPU cycles, i.e., the worst-case path through the NF. The
results from the prediction can also be combined into a general
overview, assuming a uniform distribution over all paths, as is done
in the example presented in the next section. Alternatively, we
can categorize packets from a captured trace, which gives a traffic-
dependent prediction without needing a full testbed.

https://doi.org/10.1145/3123878.3131977
https://doi.org/10.1145/3123878.3131977

SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA F. Rath et al.
P
e
r
F
u
n
c
ti
o
n

P
e
r
P
la
tf
o
rm

C
o
m
p
a
ra

tiv
e

P
re

d
ic
tio

n
s

Network Function
1 #include <bcc/proto.h>
2 #include <linux/pkt_cls.h>
3 #include <net/sock.h>
4 BPF_TABLE("hash", uint16_t, uint8_t, blocked_dports, 4096);
5
6 int act_main(struct __sk_buff *skb) {
7 u8 *cursor = 0;
8 struct ethernet_t *ethernet;
9 struct ip_t *ip;

10 struct tcp_t *tcp;
11 if (skb->len < sizeof(*ethernet)+sizeof(*ip)+sizeof(*tcp)) return TC_ACT_UNSPEC;
12
13 ethernet = cursor_advance(cursor, sizeof(*ethernet));
14 if (!(ethernet->type == 0x0800)) return TC_ACT_UNSPEC;
15 ip = cursor_advance(cursor, sizeof(*ip));
16 if (ip->nextp != 0x06) return TC_ACT_UNSPEC;
17
18 tcp = cursor_advance(cursor, sizeof(*tcp));
19 uint16_t dport = tcp->dst_port;
20 uint8_t *blocked_p = blocked_dports.lookup(&dport);
21 if (!blocked_p) goto return TC_ACT_OK;
22 uint8_t blocked = *blocked_p;
23 if (blocked) return TC_ACT_PIPE;
24 else return TC_ACT_OK;
25 }

Execution Tree
if (skb->len < sizeof(*ethernet)+sizeof(*ip)+sizeof(*tcp))

{}

return TC_ACT_UNSPEC

{len < 54}

if (!(ethernet->type == 0x0800))

{len ≥ 54}

return TC_ACT_UNSPEC

{len ≥ 54, read (data+ 12) ̸= 2048}

uint16_t dport = tcp->dst_port;

{len ≥ 54, read (data+ 12) = 2048}

uint8_t *blocked_p = blocked_dports.lookup(&dport);

{len ≥ 54, read (data+ 12) = 2048}

if (!blocked_p)

{len ≥ 54, read (data+ 12) = 2048}

return TC_ACT_OK

{len ≥ 54, read (data+ 12) = 2048, λ = 0}

uint8_t blocked = *blocked_p;

{len ≥ 54, read (data+ 12) = 2048, λ ̸= 0}

if (blocked)

{len ≥ 54, read (data+ 12) = 2048, λ ̸= 0}

return TC_ACT_PIPE

{len ≥ 54, read (data+ 12) = 2048, λ ̸= 0, read (λ) ̸= 0}

return TC_ACT_OK

{len ≥ 54, read (data+ 12) = 2048, λ ̸= 0, read (λ) = 0}

Instruction Chains
1 alloca
2 getelementptr
3 load
4 icmp
5 br
6 bpf_load_half
7 icmp
8 br

1 alloca
2 getelementptr
3 load
4 icmp
5 br
6 bpf_load_half
7 icmp
8 br
9 bpf_load_byte

10 icmp
11 br
12 bpf_load_half
13 trunc
14 store
15 bpf_pseudo
16 bpf_map_lookup
17 hash(2, 1)
18 icmp
19 br
20 load
21 icmp
22 br

· · ·

Performance Prediction

300 500 700 900 1100 1300 1500

CPU
Cycles

0

2

P
ro

b
a
b
.

D
e
n
si

ty

×10
−3

measured predicted

300 500 700 900 1100 1300 1500

CPU Cycles
0

2

4

P
ro

b
a
b
.

D
en

si
ty

×10
−2

w
o
rs

t
ca

se
p
re

d
ic

ti
o
n

m
a
lf

o
rm

ed

p
a
ss

/
d
ro

p

measured predicted

1

×10
−7

...
Offline Calibration

Measure instruction costs
on target platform, e.g.,
CPU cycles needed for
an add instruction on our
hardware (i7-870)

Per Platform Instruction Cost Databases

Cisco Juniper AWS
Carrier
Cloud · · ·

Our HW
Linux
Intel i7

Symbolic
Execution

1

Fix Bugs

2

Iterate Over
All Paths

3

Predict

5

Store

4

Figure 1: SymPerf architectural overview and Network Function performance prediction workflow.

300 500 700 900 1100 1300 1500

CPU
Cycles

0

2

P
ro

b
a
b
.

D
e
n
si

ty

×10
−3

measured predicted

(a) Histograms for the array-based implementation.

300 500 700 900 1100 1300 1500

CPU Cycles
0

2

4

P
ro

b
a
b
.

D
en

si
ty

×10
−2

w
o
rs

t
ca

se
p
re

d
ic

ti
o
n

m
a
lf

o
rm

ed

p
a
ss

/
d
ro

p

measured predicted

1

×10
−7

(b) Histograms for the hashmap implementation.

Figure 2: Histograms for predicted and measured runtime

distributions of two TCP firewall implementations.

3 FIREWALL PREDICTION EXAMPLES

We apply SymPerf to predict the runtime performance of two sim-
ple Berkeley Packet Filter (BPF) firewalls. BPF can run on the data
path [1], is available in Linux and already found industry-level de-
ployment (e.g. [4]). Since BPF NFs are small but performance criti-
cal, they are a natural showcase for our methodology’s usefulness.

We use our methodology to predict the performance of an array-
based and a hashmap firewall implementation. Both implementa-
tions perform the same task, i.e., dropping packets addressed to a
list of TCP ports. The first implementation sequentially scans an
array for blacklisted ports, while the second does a single hashmap
lookup instead. To create an instruction cost database (see Fig. 1),
we calibrate our approach for BPF instructions executed on our
testbed hardware: an off-the-shelf Intel CPU running Linux.

First, we compare the predicted to the measured performance
of the array firewall over all possible paths (assuming each path
to be equally likely) in Fig. 2(a). To obtain measured performance
figures of the firewall, we generate packets in a testbed triggering
all paths and measure the consumed CPU cycles until each path is
hit at least 106 times. We applied a 0.5% error margin for outlier

removal. Note the heavy variability in the NF performance, which
is no surprise, as some ports are at the far end of the array and
matched last, while other are at the start and matched earlier. Also,
observe that our prediction closely matchesmeasured performance.

Similarly, we compare the predicted to the measured perfor-
mance of the hashmap firewall in Fig. 2(b). We observe that the
variance is significantly lower than for the array firewall, reflect-
ing the O (1) runtime of hashmap lookups. This shows that our
methodology is able to differentiate the runtime performance of
the two implementations of the same NF. We further show that
our methodology can predict the worst-case runtime performance

of the NF. That is, we correctly predict that no path in this firewall
will ever take longer than 591 CPU cycles. Thus, we are already
able to make informed decisions about the quality of both firewalls.

We are even able to distinguish different paths through the same
NF with our methodology. Fig. 2(b) clearly distinguishes paths that
exit early as the packet is malformed (e.g. invalid TCP), as well as
paths executing the core firewall. We observe that our predictions
are off by few CPU cycles, caused by advanced CPU features that
cannot easily be captured during calibration (e.g., superscalar ex-
ecution). However, SymPerf correctly predicts the relative perfor-
mance of both program parts. Also, predicted performance is more
conservative than measured, yielding a useful upper bound.

Preliminary results show that SymPerf accurately predicts the
runtime performance of BPF NFs for all possible execution paths.
This enables network engineers to evaluate and compare perfor-
mance of different NFs without performing testbed evaluations.

4 CONCLUSION

This paper discusses SymPerf, a new approach for analyzing and
predicting NF performance. We show the potential of Symbolic Ex-
ecution not only for testing but also for quantitative NF perfor-
mance prediction and implementation comparison, including the
expected and worst case. We currently focus on further improving
this prediction as well as the resilience of our calibration. Overall,
this will lead to safer NFs with predictable performance.

ACKNOWLEDGEMENTS

This work has been partly supported by the European Research
Council (ERC) under the EU’s Horizon2020 research and innova-
tion programme grant agreement n. 647295 (SYMBIOSYS) and by
DFG within SPP 1914 (Cyber-Physical Networking).

SymPerf: Predicting Network Function Performance SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA

REFERENCES
[1] Zaafar Ahmed, Muhammad Hamad Alizai, and Affan A. Syed. 2016. InKeV: In-

Kernel Distributed Network Virtualization for DCN. ACM SIGCOMM Computer
Communication Review 46, 3.

[2] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Test-
ing: Three Decades Later. Commun. ACM 56, 2 (2013), 82–90.

[3] Marco Canini, Daniele Venzano, Peter Perešíni, Dejan Kostić, and Jennifer Rex-
ford. 2012. A NICEWay to Test OpenFlow Applications. In Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation (NSDI).

[4] CiliumAuthors. 2017. Cilium: Helping Linux SecureMicroservices. (2017). https:
//www.cilium.io/ [accessed 2017-07-13].

[5] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. 2016. Sym-
Net: scalable symbolic execution for modern networks. In Proceedings of the
ACM SIGCOMM 2016 Conference. ACM, 314–327.

https://www.cilium.io/
https://www.cilium.io/

	Abstract
	1 Introduction
	2 Predicting NF Behavior
	3 Firewall Prediction Examples
	4 Conclusion
	References

