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The Need for Predictability High Level Overview

• Software-based on-path Network Functions
▶ Would be very nice to have!
▶ But operators fear uncertainty of code execution

▶ Performance degradation
▶ Buggy behavior
▶ Interference with other flows/services
▶ Generation of unwanted traffic

• To gain trust in software-based NFs, we need to:
▶ Predict, assess, analyze, …, know!
▶ The behavior and performance impact of a network function before deploying it
▶ Ideally: a rigorous, precise and automated tool

a Symbolic Analysis of NF Code
▶ Rigorous analysis of all feasible execution paths
▶ Set of all possible instruction chains
▶ Detect bugs, e.g., buffer-overflows

b Per-Platform Calibration
▶ Instruction cost and execution model

c Performance Prediction
▶ Predicts required computational effort of the NF
▶ For a given traffic pattern, best/worst case, equal distribution…
▶ Predicts impact on network ressources
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Per Function

Network Function
1 #include <bcc/proto.h>
2 #include <linux/pkt_cls.h>
3 #include <net/sock.h>
4 BPF_TABLE("hash", uint16_t, uint8_t, blocked_dports, 4096);
5
6 int act_main(struct __sk_buff *skb) {
7 u8 *cursor = 0;
8 struct ethernet_t *ethernet;
9 struct ip_t *ip;

10 struct tcp_t *tcp;
11 if (skb->len < sizeof(*ethernet)+sizeof(*ip)+sizeof(*tcp)) return TC_ACT_UNSPEC;
12
13 ethernet = cursor_advance(cursor, sizeof(*ethernet));
14 if (!(ethernet->type == 0x0800)) return TC_ACT_UNSPEC;
15 ip = cursor_advance(cursor, sizeof(*ip));
16 if (ip->nextp != 0x06) return TC_ACT_UNSPEC;
17
18 tcp = cursor_advance(cursor, sizeof(*tcp));
19 uint16_t dport = tcp->dst_port;
20 uint8_t *blocked_p = blocked_dports.lookup(&dport);
21 if (!blocked_p) return TC_ACT_OK;
22 uint8_t blocked = *blocked_p;
23 if (blocked) return TC_ACT_PIPE;
24 else return TC_ACT_OK;
25 }

Execution Tree
if (skb->len < sizeof(*ethernet)+sizeof(*ip)+sizeof(*tcp))

{}

return TC_ACT_UNSPEC

{len < 54}

if (!(ethernet->type == 0x0800))

{len ≥ 54}

return TC_ACT_UNSPEC

{len ≥ 54, read (data+ 12) ̸= 2048}

uint16_t dport = tcp->dst_port;

{len ≥ 54, read (data+ 12) = 2048}

uint8_t *blocked_p = blocked_dports.lookup(&dport);

{len ≥ 54, read (data+ 12) = 2048}

if (!blocked_p)

{len ≥ 54, read (data+ 12) = 2048}

return TC_ACT_OK

{len ≥ 54, read (data+ 12) = 2048, λ = 0}

uint8_t blocked = *blocked_p;

{len ≥ 54, read (data+ 12) = 2048, λ ̸= 0}

if (blocked)

{len ≥ 54, read (data+ 12) = 2048, λ ̸= 0}

return TC_ACT_PIPE

{len ≥ 54, read (data+ 12) = 2048, λ ̸= 0, read (λ) ̸= 0}

return TC_ACT_OK

{len ≥ 54, read (data+ 12) = 2048, λ ̸= 0, read (λ) = 0}
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1 Symbolically analyze the NF
• Generate Execution Tree

• All feasible paths

2 If bugs are found, fix NF

Instruction Chains
1alloca
2getelementptr
3load
4icmp
5br
6bpf_load_half
7icmp
8br

1alloca
2getelementptr
3load
4icmp
5br
6bpf_load_half
7icmp
8br
9bpf_load_byte

10icmp
11br
12bpf_load_half
13trunc
14store
15bpf_pseudo
16bpf_map_lookup
17hash(2, 1)
18icmp
19br
20load
21icmp
22br
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3 Walk the Execution Tree
• Each Path corresponds to exactly one

Instruction Chain

• Extract finegrained information

Per Platform

Offline Calibration
Measure instruction costs
on target platform, e.g.,
CPU cycles needed for
an add instruction on our
hardware (i7-870)
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4 Calibrate the Platform
• Each platform has different performance

characteristics

• Perform a series of microbenchmarks

• Once per platform

• Is done offline and can be shared

• No testbed required!

200 225 250 275 300 325 350 375 400

CPU Cycles

0.00

0.05

0.10

F
re

q
u
e
n
c
y

0.00

0.25

0.50

0.75

1.00

C
D

F

measured

Per Platform Instruction Cost Databases

Cisco Juniper AWS Carrier
Cloud

Our HW
Linux
Intel i7

Performance Prediction

Performance Prediction
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5 Predict the performance of a Network Function
• Convolute the costs for each instruction in a chain

• Combine path predictions by traffic pattern (e.g., from .pcap traces)

• Predict average case or worst case

6 Improve the performance of a Network Function
• Create test cases to assist the NF engineer with…

• … increasing packet rate

• … reducing latency

• … hardening against attacks
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Opportunities

CPU Effects
• Thoroughly analyze CPU effects

▶ Caching probably has little impact
▶ Branch prediction on the other hand…
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System Interactions
• Which packet rate is actually achievable
for a certain NF?

• How do multiple NFs interact with one
another?
▶ When used serially on the same packets, or …
▶ … independently on different flows

• How does the persistent state influence
behavior?
▶ Can invariants be proven?
▶ … in the presence of race conditions?

Symbolic Analysis
• Symbolic Execution is prone to path
explosion, even when bounded
▶ How far can we push it in this specific area?

• SMT solvers, while impressive, still have to
solve NP-hard problems
▶ How well can cryptographic functions be emulated?

• How can interactions between multiple
NFs be modeled?
▶ On the same system, or…
▶ … over the network
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