
SymPerf:SymPerf:

Predicting Network Function PerformancePredicting Network Function Performance

The Need for Predictability High Level Overview

• Software-based on-path Network Functions
▶ Would be very nice to have!
▶ But operators fear uncertainty of code execution

▶ Performance degradation
▶ Buggy behavior
▶ Interference with other flows/services
▶ Generation of unwanted traffic

• To gain trust in software-based NFs, we need to:
▶ Predict, assess, analyze, …, know!
▶ The behavior and performance impact of a network function before deploying it
▶ Ideally: a rigorous, precise and automated tool

a Symbolic Analysis of NF Code
▶ Rigorous analysis of all feasible execution paths
▶ Set of all possible instruction chains
▶ Detect bugs, e.g., buffer-overflows

b Per-Platform Calibration
▶ Instruction cost and execution model

c Performance Prediction
▶ Predicts required computational effort of the NF
▶ For a given traffic pattern, best/worst case, equal distribution…
▶ Predicts impact on network ressources

a

b

c

SymPerf

Per Function

Network Function
1 #include <bcc/proto.h>
2 #include <linux/pkt_cls.h>
3 #include <net/sock.h>
4 BPF_TABLE("hash", uint16_t, uint8_t, blocked_dports, 4096);
5
6 int act_main(struct __sk_buff *skb) {
7 u8 *cursor = 0;
8 struct ethernet_t *ethernet;
9 struct ip_t *ip;

10 struct tcp_t *tcp;
11 if (skb->len < sizeof(*ethernet)+sizeof(*ip)+sizeof(*tcp)) return TC_ACT_UNSPEC;
12
13 ethernet = cursor_advance(cursor, sizeof(*ethernet));
14 if (!(ethernet->type == 0x0800)) return TC_ACT_UNSPEC;
15 ip = cursor_advance(cursor, sizeof(*ip));
16 if (ip->nextp != 0x06) return TC_ACT_UNSPEC;
17
18 tcp = cursor_advance(cursor, sizeof(*tcp));
19 uint16_t dport = tcp->dst_port;
20 uint8_t *blocked_p = blocked_dports.lookup(&dport);
21 if (!blocked_p) return TC_ACT_OK;
22 uint8_t blocked = *blocked_p;
23 if (blocked) return TC_ACT_PIPE;
24 else return TC_ACT_OK;
25 }

Execution Tree
if (skb->len < sizeof(*ethernet)+sizeof(*ip)+sizeof(*tcp))

{}

return TC_ACT_UNSPEC

{len < 54}

if (!(ethernet->type == 0x0800))

{len ≥ 54}

return TC_ACT_UNSPEC

{len ≥ 54, read (data+ 12) ̸= 2048}

uint16_t dport = tcp->dst_port;

{len ≥ 54, read (data+ 12) = 2048}

uint8_t *blocked_p = blocked_dports.lookup(&dport);

{len ≥ 54, read (data+ 12) = 2048}

if (!blocked_p)

{len ≥ 54, read (data+ 12) = 2048}

return TC_ACT_OK

{len ≥ 54, read (data+ 12) = 2048, λ = 0}

uint8_t blocked = *blocked_p;

{len ≥ 54, read (data+ 12) = 2048, λ ̸= 0}

if (blocked)

{len ≥ 54, read (data+ 12) = 2048, λ ̸= 0}

return TC_ACT_PIPE

{len ≥ 54, read (data+ 12) = 2048, λ ̸= 0, read (λ) ̸= 0}

return TC_ACT_OK

{len ≥ 54, read (data+ 12) = 2048, λ ̸= 0, read (λ) = 0}

1

2

1 Symbolically analyze the NF
• Generate Execution Tree

• All feasible paths

2 If bugs are found, fix NF

Instruction Chains
1alloca
2getelementptr
3load
4icmp
5br
6bpf_load_half
7icmp
8br

1alloca
2getelementptr
3load
4icmp
5br
6bpf_load_half
7icmp
8br
9bpf_load_byte

10icmp
11br
12bpf_load_half
13trunc
14store
15bpf_pseudo
16bpf_map_lookup
17hash(2, 1)
18icmp
19br
20load
21icmp
22br

3

3 Walk the Execution Tree
• Each Path corresponds to exactly one

Instruction Chain

• Extract finegrained information

Per Platform

Offline Calibration
Measure instruction costs
on target platform, e.g.,
CPU cycles needed for
an add instruction on our
hardware (i7-870)

4

4 Calibrate the Platform
• Each platform has different performance

characteristics

• Perform a series of microbenchmarks

• Once per platform

• Is done offline and can be shared

• No testbed required!

200 225 250 275 300 325 350 375 400

CPU Cycles

0.00

0.05

0.10

F
re

q
u
e
n
c
y

0.00

0.25

0.50

0.75

1.00

C
D

F

measured

Per Platform Instruction Cost Databases

Cisco Juniper AWS Carrier
Cloud

Our HW
Linux
Intel i7

Performance Prediction

Performance Prediction

0 50 100 150 200 250 300 350

CPU Cycles

0.0

0.1

0.2

F
re

q
u
en

cy

0.00

0.25

0.50

0.75

1.00

C
D

F

measured
predicted

5 5
Rate [Million pkt/s]

0 200 400 600 800 1000 1200 1400

CPU Cycles

0.000

0.002

F
re

q
u
en

cy

0.00

0.25

0.50

0.75

1.00

C
D

F

measured
predicted

5 5 4 3 2
Rate [Million pkt/s]

0 250 500 750 1000 1250 1500 1750

CPU Cycles

0.000

0.025

0.050

F
re

q
u
en

cy

0.00

0.25

0.50

0.75

1.00

C
D

F

measured IPv4
predicted IPv4
measured IPv6
predicted IPv6

5 5 4 3 2 1.3
Rate [Million pkt/s]

5 Predict the performance of a Network Function
• Convolute the costs for each instruction in a chain

• Combine path predictions by traffic pattern (e.g., from .pcap traces)

• Predict average case or worst case

6 Improve the performance of a Network Function
• Create test cases to assist the NF engineer with…

• … increasing packet rate

• … reducing latency

• … hardening against attacks

56

Opportunities

CPU Effects
• Thoroughly analyze CPU effects

▶ Caching probably has little impact
▶ Branch prediction on the other hand…

0 250 500 750 1000 1250 1500 1750 2000

CPU Cycles

0.00

0.01

F
re

q
u
en

cy

0.00

0.25

0.50

0.75

1.00

C
D

F

measured
predicted

5 5 4 3 2 1.3
Rate [Million pkt/s]

System Interactions
• Which packet rate is actually achievable
for a certain NF?

• How do multiple NFs interact with one
another?
▶ When used serially on the same packets, or …
▶ … independently on different flows

• How does the persistent state influence
behavior?
▶ Can invariants be proven?
▶ … in the presence of race conditions?

Symbolic Analysis
• Symbolic Execution is prone to path
explosion, even when bounded
▶ How far can we push it in this specific area?

• SMT solvers, while impressive, still have to
solve NP-hard problems
▶ How well can cryptographic functions be emulated?

• How can interactions between multiple
NFs be modeled?
▶ On the same system, or…
▶ … over the network

Funding

This project has received funding from the
European Research Council (ERC) under the
European Union’s Horizon 2020 research and
innovation programme under grant agreement

No. 647295 (SYMBIOSYS).

Felix Rath, Johannes Krude, Jan Rüth, Daniel Schemmel,
Oliver Hohlfeld, Jó Á. Bitsch, Klaus Wehrle

https://www.comsys.rwth-aachen.de/research/projects/symbiosys/


