
Symbolic Liveness Analysis
of Real-World Software

Daniel Schemmel1(B), Julian Büning1, Oscar Soria Dustmann1, Thomas Noll2,
and Klaus Wehrle1

1 Communication and Distributed Systems,
RWTH Aachen University, Aachen, Germany

{schemmel,buening,soriadustmann,
wehrle}@comsys.rwth-aachen.de

2 Software Modeling and Verification,
RWTH Aachen University, Aachen, Germany

noll@cs.rwth-aachen.de

Abstract. Liveness violation bugs are notoriously hard to detect, espe-
cially due to the difficulty inherent in applying formal methods to real-
world programs. We present a generic and practically useful liveness
property which defines a program as being live as long as it will eventu-
ally either consume more input or terminate. We show that this property
naturally maps to many different kinds of real-world programs.

To demonstrate the usefulness of our liveness property, we also present
an algorithm that can be efficiently implemented to dynamically find las-
sos in the target program’s state space during Symbolic Execution. This
extends Symbolic Execution, a well known dynamic testing technique,
to find a new class of program defects, namely liveness violations, while
only incurring a small runtime and memory overhead, as evidenced by
our evaluation. The implementation of our method found a total of five
previously undiscovered software defects in BusyBox and the GNU Core-
utils. All five defects have been confirmed and fixed by the respective
maintainers after shipping for years, most of them well over a decade.

Keywords: Liveness analysis · Symbolic Execution · Software testing
Non-termination bugs

1 Introduction

Advances in formal testing and verification methods, such as Symbolic Execution
[10–12,22–24,42,49] and Model Checking [5,6,13,17,21,27,29,30,43,50], have
enabled the practical analysis of real-world software. Many of these approaches
are based on the formal specification of temporal system properties using sets of
infinite sequences of states [1], which can be classified as either safety, liveness, or
properties that are neither [31]. (However, every linear-time property can be rep-
resented as the conjunction of a safety and a liveness property.) This distinction
is motivated by the different techniques employed for proving or disproving such

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 447–466, 2018.
https://doi.org/10.1007/978-3-319-96142-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_27&domain=pdf

448 D. Schemmel et al.

properties. In practical applications, safety properties are prevalent. They con-
strain the finite behavior of a system, ensuring that “nothing bad” happens, and
can therefore be checked by reachability analysis. Hence, efficient algorithms
and tools have been devised for checking such properties that return a finite
counterexample in case of a violation [34].

Liveness properties, on the other hand, do not rule out any finite behavior
but constrain infinite behavior to eventually do “something good” [2]. Their
checking generally requires more sophisticated algorithms since they must be
able to generate (finite representations of) infinite counterexamples. Moreover,
common finite-state abstractions that are often employed for checking safety do
generally not preserve liveness properties.

While it may be easy to create a domain-specific liveness property (e.g., “a
GET/HTTP/1.1 must eventually be answered with an HTTP/1.1 {status}”), it
is much harder to formulate general liveness properties. We tackle this challenge
by proposing a liveness property based on the notion of programs as implemen-
tations of algorithms that transform input into output:

Definition 1. A program is live if and only if it always eventually consumes
input or terminates.

By relying on input instead of output as the measure of progress, we circumnavi-
gate difficulties caused by many common programming patterns such as printing
status messages or logging the current state.

Detection. We present an algorithm to detect violations of this liveness property
based on a straightforward idea: Execute the program and check after each
instruction if the whole program state has been encountered before (identical
contents of all registers and addressable memory). If a repetition is found that
does not consume input, it is deterministic and will keep recurring ad infinitum.
To facilitate checking real-world programs, we perform the search for such lassos
in the program’s state space while executing it symbolically.

Examples. Some examples that show the generality of this liveness property
are: 1. Programs that operate on input from files and streams, such as cat,
sha256sum or tail. This kind of program is intended to continue running as
long as input is available. In some cases this input may be infinite (e.g., cat -).
2. Reactive programs, such as calc.exe or nginx wait for events to occur. Once
an event occurs, a burst of activity computes an answer, before the software
goes back to waiting for the next event. Often, an event can be sent to signal a
termination request. Such events are input just as much as the contents of a file
read by the program are input.

In rare cases, a program can intuitively be considered live without satisfying
our liveness property. Most prominent is the yes utility, which will loop forever,
only printing output. According to our experience the set of useful programs
that intentionally allow for an infinite trace consuming only finite input is very
small and the violation of our liveness property can, in such cases, easily be
recognized as intentional. Our evaluation supports this claim (cf. Sect. 6).

Symbolic Liveness Analysis of Real-World Software 449

Bugs and Violations. The implementation of our algorithm detected a total of
five unintended and previously unknown liveness violations in the GNU Coreutils
and BusyBox, all of which have been in the respective codebases for at least
7 to 19 years. All five bugs have been confirmed and fixed within days. The
three implementations of yes we tested as part of our evaluation, were correctly
detected to not be live. We also automatically generated liveness violating input
programs for all sed interpreters.

1.1 Key Contributions

This paper presents four key contributions:

1. The definition of a generic liveness property for real-world software.
2. An algorithm to detect its violations.
3. An open-source implementation of the algorithm, available on GitHub1,

implemented as an extension to the Symbolic Execution engine KLEE [10].
4. An evaluation of the above implementation on a total of 354 tools from the

GNU Coreutils, BusyBox and toybox, which so far detects five previously
unknown defects in widely deployed real-world software.

1.2 Structure

We discuss related work (Sect. 2), before formally defining our liveness property
(Sect. 3). Then, we describe the lasso detection algorithm (Sect. 4), demonstrate
the practical applicability by implementing the algorithm for the SymEx engine
KLEE (Sect. 5) and evaluate it on three real-world software suites (Sect. 6). We
finally discuss the practical limitations (Sect. 7) and conclude (Sect. 8).

2 Related Work

General liveness properties [2] can be verified by proof-based methods [40], which
generally require heavy user support. Contrarily, our work is based upon the
state-exploration approach to verification. Another prominent approach to verify
the correctness of a system with respect to its specification is automatic Model
Checking using automata or tableau based methods [5].

In order to combat state-space explosion, many optimization techniques have
been developed. Most of these, however, are only applicable to safety properties.
For example, Bounded Model Checking (BMC) of software is a well-established
method for detecting bugs and runtime errors [7,18,19] that is implemented by
a number of tools [16,38]. These tools investigate finite paths in programs by
bounding the number of loop iterations and the depth of function calls, which is
not necessarily suited to detect the sort of liveness violations we aim to discover.
There is work trying to establish completeness thresholds of BMC for (safety
and) liveness properties [33], but these are useful only for comparatively small
1 https://github.com/COMSYS/SymbolicLivenessAnalysis.

https://github.com/COMSYS/SymbolicLivenessAnalysis

450 D. Schemmel et al.

systems. Moreover, most BMC techniques are based on boolean SAT, instead of
SMT, as required for dealing with the intricacies of real-world software.

Termination is closely related to liveness in our sense, and has been inten-
sively studied. It boils down to showing the well-foundedness of the program’s
transition relation by identifying an appropriate ranking function. In recent
works, this is accomplished by first synthesizing conditional termination proofs
for program fragments such as loops, and then combining sub-proofs using a
transformation that isolates program states for which termination has not been
proven yet [8]. A common assumption in this setting is that program variables
are mathematical integers, which eases reasoning but is generally unsound. A
notable exception is AProVE [28], an automated tool for termination and com-
plexity analysis that takes (amongst others) LLVM intermediate code and builds
a SymEx graph that combines SymEx and state-space abstraction, covering both
byte-accurate pointer arithmetic and bit-precise modeling of integers. However,
advanced liveness properties, floating point values, complex data structures and
recursive procedures are unsupported. While a termination proof is a witness for
our liveness property, an infinite program execution constitutes neither witness
nor violation. Therefore, non-termination proof generators, such as TNT [26],
while still related, are not relevant to our liveness property.

The authors of Bolt [32] present an entirely different approach, by proposing
an in-vivo analysis and correction method. Bolt does not aim to prove that a
system terminates or not, but rather provides a means to force already running
binaries out of a long-running or infinite loop. To this end, Bolt can attach to an
unprepared, running program and will detect loops through memory snapshot-
ting, comparing snapshots to a list of previous snapshots. A user may then choose
to forcefully break the loop by applying one of two strategies as a last-resort
option. Previous research into in-vivo analysis of hanging systems attempts to
prove that a given process has run into an infinite loop [9]. Similarly to Bolt,
Looper also attaches to a binary but then uses Concolic Execution (ConEx) to
gain insight into the remaining, possible memory changes for the process. This
allows for a diagnosis of whether the process is still making progress and will
eventually terminate. Both approaches are primarily aimed at understanding or
handling an apparent hang, not for proactively searching for unknown defects.

In [35], the authors argue that non-termination has been researched signifi-
cantly less than termination. Similar to [14,25], they employ static analysis to
find every Strongly Connected SubGraph (SCSG) in the Control Flow Graph
(CFG) of a given program. Here, a Max-SMT solver is used to synthesize a for-
mulaic representation of each node, which is both a quasi-invariant (i.e., always
holding after it held once) and edge-closing (i.e., not allowing a transition that
leaves the node’s SCSG to be taken). If the solver succeeds for each node in a
reachable SCSG, a non-terminating path has been found.

In summary, the applicability of efficient methods for checking liveness in
our setting is hampered by restrictions arising from the programming model, the
supported properties (e.g., only termination), scalability issues, missing support
for non-terminating behavior or false positives due to over-approximation. In the
following, we present our own solution to liveness checking of real-world software.

Symbolic Liveness Analysis of Real-World Software 451

3 Liveness

We begin by formally defining our liveness property following the approach by
Alpern and Schneider [1–3], which relies on the view that liveness properties do
not constrain the finite behaviors but introduce conditions on infinite behaviors.
Here, possible behaviors are given by (edge-labeled) transition systems.

Definition 2 (Transition System). A transition system T is a 4-tuple
(S ,Act ,−→, I):

– S is a finite set of states,
– Act is a finite set of actions,
– −→ ⊆ S × Act × S is a transition relation (written s

α−→ s′), and
– I ⊆ S is the set of initial states.

For s ∈ S, the sets of outgoing actions is denoted by Out(s) = {α ∈ Act |
s

α−→ s′ for some s′ ∈ S}. Moreover, we require T to be deadlock free, i.e.,
Out(s) �= ∅ for each s ∈ S. A terminal state is indicated by a self-loop involving
the distinguished action ↓ ∈ Act: if ↓ ∈ Out(s), then Out(s) = {↓}.

The self-loops ensure that all executions of a program are infinite, which is
necessary as terminal states indicate successful completion in our setting.

Definition 3 (Executions and Traces). An (infinite) execution is a sequence
of the form s0α1s1α2s2 . . . such that s0 ∈ I and si

αi+1−−−→ si+1 for every i ∈ N.
Its trace is given by α1α2 . . . ∈ Actω.

Definition 4 (Liveness Properties)

– A linear-time property over Act is a subset of Actω.
– Let Π ⊆ Act be a set of productive actions such that ↓ ∈ Π. The Π-liveness

property is given by {α1α2 . . . ∈ Actω | αi ∈ Π for infinitely many i ∈ N}.
A liveness property is generally characterized by the requirement that each

finite trace prefix can be extended to an infinite trace that satisfies this property.
In our setting, this means that in each state of a given program it is guaranteed
that eventually a productive action will be performed. That is, infinitely many
productive actions will occur during each execution. As ↓ is considered produc-
tive, terminating computations are live. This differs from the classical setting
where terminal states are usually considered as deadlocks that violate liveness.

We assume that the target machine is deterministic w.r.t. its computations
and model the consumption of input as the only source of non-determinism. This
means that if the execution is in a state in which the program will execute a non-
input instruction, only a single outgoing (unproductive) transition exists. If the
program is to consume input on the other hand, a (productive) transition exists
for every possible value of input. We only consider functions that provide at least
one bit of input as input functions, which makes ↓ the only productive action
that is also deterministic, that is, the only productive transition which must be

452 D. Schemmel et al.

taken once the state it originates from is reached. More formally, |Out(s)| >
1 ⇔ Out(s) ⊆ Π \ {↓}. Thus if a (sub-)execution siαi+1si+1 . . . contains no
productive transitions beyond ↓, it is fully specified by its first state si, as there
will only ever be a single transition to be taken.

Similarly, we assume that the target machine has finite memory. This implies
that the number of possible states is finite: |S | ∈ N. Although we model each
possible input with its own transition, input words are finite too, therefore Act
is finite and hence Out(s) for each s ∈ S .

4 Finding Lassos

Any trace t that violates a liveness property must necessarily consist of a finite
prefix p that leads to some state s ∈ S , after which no further productive transi-
tions are taken. Therefore, t can be written as t = pq, where p is finite and may
contain productive actions, while q is infinite and does not contain productive
actions. Since S is a finite set and every state from s onward will only have
a single outgoing transition and successor, q must contain a cycle that repeats
itself infinitely often. Therefore, q in turn can be written as q = fcω where f is
finite and c non-empty. Due to its shape, we call this a lasso with pf the stem
and c the loop.

Due to the infeasible computational complexity of checking our liveness prop-
erty statically (in the absence of input functions, it becomes the finite-space
halting problem), we leverage a dynamic analysis that is capable of finding any
violation in bounded time and works incrementally to report violations as they
are encountered. We do so by searching the state space for a lasso, whose loop
does not contain any productive transitions. This is näıvely achieved in the
dynamic analysis by checking whether any other state visited since the last pro-
ductive transition is equal to the current one. In this case the current state
deterministically transitions to itself, i.e., is part of the loop.

To implement this idea without prohibitively expensive resource usage, two
main challenges must be overcome: 1. Exhaustive exploration of all possible
inputs is infeasible for nontrivial cases. 2. Comparing states requires up to 264

byte comparisons on a 64 bit computer. In the rest of this section, we discuss how
to leverage SymEx to tackle the first problem (Sect. 4.1) and how to cheapen
state comparisons with specially composed hash-based fingerprints (Sect. 4.2).

4.1 Symbolic Execution

Symbolic Execution (SymEx) has become a popular dynamic analysis technique
whose primary domain is automated test case generation and bug detection
[10–12,15,22,41,42,49]. The primary intent behind SymEx is to improve upon
exhaustive testing by symbolically constraining inputs instead of iterating over
all possible values, which makes it a natural fit.

Background. The example in Fig. 1 tests whether the variable x is in the range
from 5 to 99 by performing two tests before returning the result. As x is the

Symbolic Liveness Analysis of Real-World Software 453

Fig. 1. SymEx tree showing the execution of a snippet with two ifs. The variable x is
symbolic and one state is unreachable, as its Path Constraint is unsatisfiable.

input to this snippet, it is initially assigned an unconstrained symbolic value.
Upon branching on x < 5 in line 2, the SymEx engine needs to consider two
cases: One in which x is now constrained to be smaller than 5 and another one
in which it is constrained to not be smaller than 5. On the path on which x < 5
held, ok is then assigned false, while the other path does not execute that
instruction. Afterwards, both paths encounter the branch if(x > = 100) in line
4. Since the constraint set {x < 5, x ≥ 100} is unsatisfiable, the leftmost of the
four resulting possibilities is unreachable and therefore not explored. The three
remaining paths reach the return statement in line 6. We call the set of currently
active constraints the Path Constraint (PC). The PC is usually constructed in
such a way, as to contain constraints in the combined theories of quantifier-free
bit-vectors, finite arrays and floating point numbers2.

Symbolic Execution of the Abstract Transition System. By using sym-
bolic values, a single SymEx state can represent a large number of states in the
transition system. We require that the SymEx engine, as is commonly done,
never assigns a symbolic value (with more than one satisfying model) to the
instruction pointer. Since the productive transitions of the transition system are
derived from instructions in the program code, this means that each instruction
that the SymEx engine performs either corresponds to a number of productive,
input-consuming transitions, or a number of unproductive, not input-consuming
transitions. Therefore, any lasso in the SymEx of the program is also a lasso in
the transition system (the ↓ transition requires trivial special treatment).

To ensure that the opposite is also true, a simple and common optimization
must be implemented in the SymEx engine: Only add branch conditions to the
PC that are not already implied by it. This is the case iff exactly one of the
two branching possibilities is satisfiable, which the SymEx engine (or rather its
SMT solver) needs to check in any case. Thereby it is guaranteed that if the
SymEx state is part of a loop in the transition system, not just the concrete

2 While current SymEx engines and SMT solvers still struggle with the floating point
theory in practice [37], the SMT problem is decidable for this combination of theories.
Bitblasting [20] gives a polynomial-time reduction to the boolean SAT problem.

454 D. Schemmel et al.

values, but also the symbolic values will eventually converge towards a steady
state. Again excluding trivial special treatment for program termination, a lasso
in the transition system thus entails a lasso in the SymEx of the program.

4.2 Fingerprinting

To reduce the cost of each individual comparison between two states, we take
an idea from hash maps by computing a fingerprint ρ for each state and com-
paring those. A further significant improvement is possible by using a strong
cryptographic hash algorithm to compute the fingerprint: Being able to rely
(with very high probability) on the fingerprint comparison reduces the memory
requirements, as it becomes unnecessary to store a list of full predecessor states.
Instead, only the fingerprints of the predecessors need to be kept.

Recomputing the fingerprint after each instruction would still require a full
scan over the whole state at each instruction however. Instead, we enable effi-
cient, incremental computation of the fingerprint by not hashing everything, but
rather hashing many small fragments, and then composing the resulting hashes
using bitwise xor. Then, if an instruction attempts to modify a fragment f , it is
easy to compute the old and new fragment hashes. The new fingerprint ρnew can
then be computed as ρnew := ρold ⊕ hash(fold) ⊕ hash(fnew). Changing a single
fragment therefore requires only two computations and bitwise xors on constant
size bit strings—one to remove the old fragment from the composite and one to
insert the new one. Each incremental fingerprint update only modifies a small
number of fragments statically bounded by the types used in the program.

4.3 Algorithm Overview

The proposed algorithm explores as much of the input state as is possible within
a specified amount of time, using SymEx to cover large portions of the input
space simultaneously. Every SymEx state is efficiently checked against all its
predecessors by comparing their fingerprints.

5 Efficient Implementation of the Algorithm

To develop the algorithm presented in the previous section into a practically
useful program, we decided to build upon the KLEE SymEx engine [10], with
which many safety bugs in real-world programs have been previously found
[10,15,41]. As KLEE in turn builds upon the LLVM compiler infrastructure
[36], this section begins with a short introduction to LLVM Intermediate Rep-
resentation (IR) (Sect. 5.1), before explaining how the fragments whose hashes
make up the fingerprint can be implemented (Sect. 5.2) and how to track finger-
prints (Sect. 5.3). Finally, we detail a technique to avoid as many comparisons
as possible (Sect. 5.4).

Symbolic Liveness Analysis of Real-World Software 455

5.1 LLVM Intermediate Representation

LLVM Intermediate Representation (IR) was designed as a typed, low-level lan-
guage independent from both (high-level) source language and any specific tar-
get architecture, to facilitate compiler optimizations. It operates on an unlim-
ited number of typed registers of arbitrary size, as well as addressable memory.
Instructions in IR operate in Static Single Assignment (SSA) form, i.e., registers
are only ever assigned once and never modified. The language also has functions,
which have a return type and an arbitrary number of typed parameters. Apart
from global scope, there is only function scope, but IR features no block scope.

Addressable objects are either global variables, or explicitly allocated, e.g.,
using malloc (cleaned up with free) or alloca (cleaned up on return from
function).

Fig. 2. Six kinds of fragments suffice to denote all possible variants. Symbolic values
are written as serialized symbolic expressions consisting of all relevant constraints. All
other fields only ever contain concrete values, which are simply used verbatim. Fields
of dynamic size are denoted by a ragged right edge.

5.2 Fragments

When determining what is to become a fragment, i.e., an atomic portion of a
fingerprint, two major design goals should be taken into consideration:

1. Collisions between hashed fragments should not occur, as they would expunge
one another from the fingerprint. This goal can be decomposed further:
(a) The hashing algorithm should be chosen in a manner that makes collisions

so unlikely, as to be non-existent in practice.
(b) The fragments themselves need to be generated in a way that ensures that

no two different fragments have the same representation, as that would
of course cause their hashes to be equal as well.

2. Fragment sizes should be as close as possible to what will be modified by the
program in one step. Longer fragments are more expensive to compute and
hash, and shorter fragments become invalidated more frequently.

Avoiding Collisions. In order to minimize the risk of accidental collisions,
which would reduce the efficacy of our methodology, we chose the cryptographi-
cally secure checksum algorithm BLAKE2b [4] to generate 256 bit hashes, provid-
ing 128 bit collision resistance. To the best of our knowledge, there are currently

456 D. Schemmel et al.

Fig. 3. Incremental computation of a new fingerprint. Fingerprints are stored in a call
stack, with each stack frame containing a partial fingerprint of all addressable memory
allocated locally in that function, another partial fingerprint of all registers used in the
function and a list of previously encountered fingerprints. A partial fingerprint of all
dynamic and global variables is stored independently.

no relevant structural attacks on BLAKE2b, which allows us to assume that the
collision resistance is given. For comparison: The revision control system GIT
currently uses 160 bit SHA-1 hashes to create unique identifiers for its objects,
with plans underway to migrate to a stronger 256 bit hash algorithm3.

To ensure that the fragments themselves are generated in a collision-free
manner, we structure them with three fields each, as can be seen in Fig. 2.
The first field contains a tag that lets us distinguish between different types of
fragments, the middle field contains an address appropriate for that type, and the
last field is the value that the fragment represents. We distinguish between three
different address spaces: 1. main memory, 2. LLVM registers, which similarly
to actual processors hold values that do not have a main memory address, and
3. function arguments, which behave similarly to ordinary LLVM registers, but
require a certain amount of special handling in our implementation. For example,
the fragment (0x01, 0xFF3780, 0xFF) means that the memory address 0xFF3780
holds the concrete byte 0xFF. This fragment hashes to ea58...f677.

If the fragment represents a concrete value, its size is statically bounded by
the kind of write being done. For example, a write to main memory requires
1 byte + 8 byte + 1 byte = 10 byte and modifying a 64 bit register requires
1 byte + 8 byte + 64 bit

8 bit/byte = 17 byte. In the case of fragments representing
symbolic values on the other hand, such a guarantee cannot effectively be made,
as the symbolic expression may become arbitrarily large. Consider, for example,
a symbolic expression of the form λ = input1 + input2 + . . . + inputn, whose
result is directly influenced by an arbitrary amount of n input words.

In summary, fragments are created in a way that precludes structural weak-
nesses as long as the hash algorithm used (in our case 256 bit BLAKE2b) remains
unbroken and collisions are significantly less probable than transient failures of
the computer performing the analysis.

3 https://www.kernel.org/pub/software/scm/git/docs/technical/hash-function-trans
ition.html (Retrieved Jan. 2018).

https://www.kernel.org/pub/software/scm/git/docs/technical/hash-function-transition.html
https://www.kernel.org/pub/software/scm/git/docs/technical/hash-function-transition.html

Symbolic Liveness Analysis of Real-World Software 457

5.3 Fingerprint Tracking

When using the KLEE SymEx engine, the call stack is not explicitly mapped
into the program’s address space, but rather directly managed by KLEE itself.
This enables us to further extend the practical usefulness of our analysis by only
considering fragments that are directly addressable from each point of the exe-
cution, which in turn enables the detection of certain non-terminating recursive
function calls. It also goes well together with the implicit cleanup of all function
variables when a function returns to its caller.

To incrementally construct the current fingerprint we utilize a stack that
follows the current call stack, as is shown exemplary in Fig. 3. Each entry consists
of three different parts: 1. A (partial) fingerprint over all local registers, i.e.,
objects that are not globally addressable, 2. A (partial) fingerprint over all locally
allocated objects in main memory and 3. A list of pairs of instruction IDs and
fingerprints, that denote the states that were encountered previously.

Modifying Objects. Any instruction modifying an object without reading
input, such as an addition, is dealt with as explained previously: First, recom-
pute the hash of the old fragment(s) before the instruction is performed and
remove it from the current fingerprint. Then, perform the instruction, compute
the hash of the new fragment(s) and add it to the current fingerprint.

Similarly modify the appropriate partial fingerprint, e.g., for a load the fin-
gerprint of all local registers of the current function. Note that this requires each
memory object to be mappable to where it was allocated from.

Function Calls. To perform a function call, push a new entry onto the stack
with the register fingerprint initialized to the xor of the hashes of the argument
fragments and the main memory fingerprint set to the neutral element, zero.
Update the current fingerprint by removing the caller’s register fingerprint and
adding the callee’s register fingerprint. Add the pair of entry point and current
fingerprint to the list of previously seen fingerprints.

Function Returns. When returning from a function, first remove both the
fingerprint of the local registers, as well as the fingerprint of local, globally
addressable objects from the current fingerprint, as all of these will be implicitly
destroyed by the returning function. Then pop the topmost entry from the stack
and re-enable the fingerprint of the local registers of the caller.

Reading Input. Upon reading input all previously encountered fingerprints
must be disregarded by clearing all fingerprint lists of the current SymEx state.

5.4 Avoiding Comparisons

While it would be sufficient to simply check all previous fingerprints for a repeti-
tion every time the current fingerprint is modified, it would be rather inefficient
to do so. To gain as much performance as possible, our implementation attempts
to perform as few comparisons as possible.

458 D. Schemmel et al.

We reduce the number of fingerprints that need to be considered at any point
by exploiting the structure of the call stack: To find any non-recursive infinite
loop, it suffices to search the list of the current stack frame, while recursive
infinite loops can be identified using only the first fingerprint of each stack frame.

We also exploit static control flow information by only storing and testing
fingerprints for Basic Blocks (BBs), which are sequences of instructions with
linear control flow4. If any one instruction of a BB is executed infinitely often,
all of them are. Thus, a BB is either fully in the infinite cycle, or no part of it is.

It is not even necessary to consider every single BB, as we are looking for a
trace with a finite prefix leading into a cycle. As the abstract transition system is
an unfolding of the CFG, any cycle in the transition system must unfold from a
cycle in the CFG. Any reachable cycle in the CFG must contain a BB with more
than one predecessor, as at least one BB must be reachable from both outside
and inside the cycle. Therefore, it is sufficient to only check BBs with multiple
predecessors. As IR only provides intraprocedural CFGs, we additionally perform
a check for infinite recursion at the beginning of each function.

6 Evaluation

In this section we demonstrate the effectiveness and performance of our app-
roach on well tested and widely used real-world software. We focus on three
different groups of programs: 1. The GNU Coreutils and GNU sed (Sect. 6.1),
2. BusyBox (Sect. 6.2) and 3. Toybox (Sect. 6.3) and evaluate the performance
of our liveness analysis in comparison with baseline KLEE in the following met-
rics: 1. instructions per second and 2. peak resident set size. Additionally, we
analyze the impact of the time limit on the overhead (Sect. 6.4). We summarize
our findings in Sect. 6.5.

Setup. We used revision aa01f835 of our software, which is based on KLEE
revision 37f554d6. Both versions are invoked as suggested by the KLEE authors
and maintainers [10,47] in order to maximize reproducability and ensure realis-
tic results. However, we choose the Z3 [39] solver over STP [20] as the former
provides a native timeout feature, enabling more reliable measurements. The
solver timeout is 30 s and the memory limit is 10 000 MiB.

We run each configuration 20 times in order to gain statistical confidence in
the results. From every single run, we extract both the instructions, allowing us
to compute the instructions per second, and the peak resident set size of the pro-
cess, i.e., the maximal amount of memory used. We additionally reproduced the
detected liveness violations with 30 runs each with a time limit of 24 h, recording
the total time required for our implementation to find the first violation. For all
results we give a 99% confidence interval.

4 In IR there is an exemption for function calls, namely they do not break up BBs.
5 https://github.com/COMSYS/SymbolicLivenessAnalysis/tree/aa01f83.
6 https://github.com/klee/klee/tree/37f554d.

https://github.com/COMSYS/SymbolicLivenessAnalysis/tree/aa01f83
https://github.com/klee/klee/tree/37f554d

Symbolic Liveness Analysis of Real-World Software 459

6.1 GNU Utilities

We combine the GNU tools from the Coreutils 8.25 [45] with GNU sed 4.4 [46],
as the other tool suites also contain an implementation of the sed utility. We
excluded 4 tools from the experiment as their execution is not captured by
KLEE’s system model. Thereby, the experiment contains a total of 103 tools.

Violations. The expected liveness violation in yes occurred after 2.51 s ± 0.26 s.
In 26 out of 30 runs, we were also able to detect a violation in GNU sed after
a mean computation time of 8.06 h ± 3.21 h (KLEE’s timeout was set to 24 h).
With the symbolic arguments restricted to one argument of four symbolic charac-
ters, reproduction completed in all 30 runs with a mean of 5.19 min ± 0.17 min.

Fig. 4. GNU Coreutils and GNU sed, 60 min time limit. Relative change of instructions
per second (top) and peak resident set (bottom) versus the KLEE baseline. Note the
logarithmic scale and the black 99% confidence intervals.

Fig. 5. BusyBox, 60 min time limit. Relative change of instructions per second (top)
and peak resident set (bottom) versus the KLEE baseline. Note the logarithmic scale
and the black 99% confidence intervals.

We detected multiple violations in tail stemming from two previously
unknown bugs, that we reported. Both bugs were originally detected and
reported in version 8.257 and fixed in version 8.26. Both bugs were in the code-
base for over 16 years. Reproducing the detection was successful in 30 of 30
attempts with a mean time of 1.59 h ± 0.66 h until the first detected violation.

We detected another previously unknown bug in ptx. Although we originally
identified the bug in version 8.27, we reported it after the release of 8.288, leading
7 GNU tail report 1: http://bugs.gnu.org/24495.

GNU tail report 2: http://bugs.gnu.org/24903.
8 GNU ptx report: http://bugs.gnu.org/28417.

http://bugs.gnu.org/24495
http://bugs.gnu.org/24903
http://bugs.gnu.org/28417

460 D. Schemmel et al.

to a fix in version 8.29. This bug is not easily detected: Only 9 of 30 runs
completed within the time limit of 24 h. For these, mean time to first detection
was 17.15 h ± 3.74 h.

Performance. Figure 4 shows the relative changes in instructions per second
and peak resident set. As can be seen, performance is only reduced slightly
below the KLEE baseline and the memory overhead is even less significant. The
leftmost tool, make-prime-list, shows the by far most significant change from
the KLEE baseline. This is because make-prime-list only reads very little
input, followed by a very complex computation in the course of which no further
input is read.

6.2 BusyBox

For this experiment we used BusyBox version 1.27.2 [44]. As BusyBox contains
a large number of network tools and daemons, we had to exclude 232 tools from
the evaluation, leaving us with 151 tools.

Violations. Compared with Coreutils’ yes, detecting the expected liveness vio-
lation in the BusyBox implementation of yes took comparatively long with
27.68 s ± 0.33 s. We were unable to detect any violations in BusyBox sed with-
out restricting the size of the symbolic arguments. When restricting them to one
argument with four symbolic characters, we found the first violation in all 30
runs within 1.44 h ± 0.08 h. Our evaluation uncovered two previously unknown
bugs in BusyBox hush9. We first detected both bugs in version 1.27.2. In all 30
runs, a violation was detected after 71.73 s ± 5.00 s.

Performance. As shown in Fig. 5, BusyBox has a higher slowdown on average
than the GNU Coreutils (c.f. Fig. 4). Several tools show a decrease in memory
consumption that we attribute to the drop in retired instructions. yes shows the
least throughput, as baseline KLEE very efficiently evaluates the infinite loop.

Fig. 6. Toybox, 60 min time limit. Relative change of instructions per second (top)
and peak resident set (bottom) versus the KLEE baseline. Note the logarithmic scale
and the black 99% confidence intervals.

9 BusyBox hush report 1: https://bugs.busybox.net/10421.
BusyBox hush report 2: https://bugs.busybox.net/10686.

https://bugs.busybox.net/10421
https://bugs.busybox.net/10686

Symbolic Liveness Analysis of Real-World Software 461

6.3 Toybox

The third and final experiment with real-world software consists of 100 tools
from toybox 0.7.5 [48]. We excluded 76 of the total of 176 tools, which rely on
operating system features not reasonably modeled by KLEE.

Violations. For yes we encounter the first violation after 6.34 s ± 0.24 s, which
puts it in between the times for GNU yes and BusyBox yes. This violation is
also triggered from env by way of toybox’s internal path lookup. As with the
other sed implementations, toybox sed often fails to complete when run with
the default parameter set. With only one symbolic argument of four symbolic
characters, however, we encountered a violation in all 30 runs within 4.99 min ±
0.25 min.

Performance. Overall as well, our approach shows a performance for toybox in
between those for the GNU Coreutils and BusyBox, as can be seen in Fig. 6. Both
memory and velocity overhead are limited. For most toybox tools, the overhead
is small enough to warrant always enabling our changes when running KLEE.

Fig. 7. Changes in instructions per second, peak res-
ident set and branch coverage over multiple KLEE
timeouts. Note the logarithmic scale and the black
99% confidence intervals.

Fig. 8. Heap usage of a 30 min
BusyBox hush run. The 186
vertical lines show detected
liveness violations.

6.4 Scaling with the Time Limit

To ascertain whether the performance penalty incurred by our implementation
scales with the KLEE time limit, we have repeated each experiment with time
limits 15 min, 30 min and 60 min. The results shown in Fig. 7 indicate that, at
least at this scale, baseline KLEE and our implementation scale equally well.
This is true for almost all relevant metrics: retired instructions per second, peak
resident set and covered branches. The prominent exception is BusyBox’s mem-
ory usage, which is shown exemplary in Fig. 8 for a 30 min run of BusyBox hush.
As can be seen, the overhead introduced by the liveness analysis is mostly stable
at about a quarter of the total heap usage.

462 D. Schemmel et al.

6.5 Summary

All evaluated tool suites show a low average performance and memory penalty
when comparing our approach to baseline KLEE. While the slowdown is signif-
icant for some tools in each suite, it is consistent as long as time and memory
limits are not chosen too tightly. In fact, for these kinds of programs, it is rea-
sonable to accept a limited slowdown in exchange for opening up a whole new
category of defects that can be detected. In direct comparison, performance
varies in between suites, but remains reasonable in each case.

7 Limitations

Our approach does not distinguish between interpreters and interpreted pro-
grams. While this enables the automatic derivation of input programs for such
interpreters as sed, it also makes it hard to recognize meaningful error cases. This
causes the analysis of all three implementations of sed used in the evaluation
(Sect. 6) to return liveness violations.

In its current form, our implementation struggles with runaway counters, as a
64 bit counter cannot be practically enumerated on current hardware. Combining
static analyses, such as those done by optimizing compilers may significantly
reduce the impact of this problem in the future.

A different pattern that may confound our implementation is related to
repeated allocations. If memory is requested again after releasing it, the newly
acquired memory may not be at the same position, which causes any pointers
to it to have different values. While this is fully correct, it may cause the imple-
mentation to not recognize cycles in a reasonable time frame. This could be
mitigated by analyzing whether the value of the pointer ever actually matters.
For example, in the C programming language, it is fairly uncommon to inspect
the numerical value of a pointer beyond comparing it to NULL or other pointers.
A valid solution would however require strengthening KLEE’s memory model,
which currently does not model pointer inspection very well.

Another potential problem is how the PC is serialized when using symbolic
expressions as the value of a fragment (c.f. Sect. 5.2). We currently reuse KLEE’s
serialization routines, which are not exactly tuned for performance. Also, each
symbolic value that is generated by KLEE is assigned a unique name, that is
then displayed by the serialization, which discounts potential equivalence.

Finally, by building upon SymEx, we inherit not only its strengths, but also
its weaknesses, such as a certain predilection for state explosion and a reliance
on repeated SMT solving [12]. Also, actual SymEx implementations are limited
further than that. For example, KLEE returns a concrete pointer from allocation
routines instead of a symbolic value representing all possible addresses.

8 Conclusion and Outlook

It is our strong belief that the testing and verification of liveness properties
needs to become more attractive to developers of real-world programs. Our work

Symbolic Liveness Analysis of Real-World Software 463

provides a step in that direction with the formulation of a liveness property that
is general and practically useful, thereby enabling even developers uncomfortable
with interacting with formal testing and verification methods to at least check
their software for liveness violation bugs.

We demonstrated the usefulness of our liveness property by implementing it
as an extension to the Symbolic Execution engine KLEE, thereby enabling it to
discover a class of software defects it could not previously detect, and analyzing
several large and well-tested programs. Our implementation caused the discovery
and eventual correction of a total of five previously unknown defects, three in
the GNU Coreutils, arguably one of the most well-tested code bases in existence,
and two in BusyBox. Each of these bugs had been in released software for over 7
years—four of them even for over 16 years, which goes to show that this class of
bugs has so far proven elusive. Our implementation did not cause a single false
positive: all reported violations are indeed accompanied by concrete test cases
that reproduce a violation of our liveness property.

The evaluation in Sect. 6 also showed that the performance impact, in matters
of throughput as well as in matters of memory consumption, remains significantly
below 2× on average, while allowing the analysis to detect a completely new
range of software defects. We demonstrated that this overhead remains stable
over a range of different analysis durations.

In future work, we will explore the opportunities for same-state merging that
our approach enables by implementing efficient equality testing of SymEx states
via our fingerprinting scheme. We expect that this will further improve the per-
formance of our approach and maybe even exceed KLEE’s baseline performance
by reducing the amount of duplicate work done.

Acknowledgements. This research is supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 Research and Innovation Programme
(grant agreement №. 647295 (SYMBIOSYS)).

References

1. Alpern, B., Schneider, F.B.: Verifying temporal properties without temporal logic.
ACM Trans. Program. Lang. Syst. 11(1), 147–167 (1989)

2. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185
(1985)

3. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput.
2(3), 117–126 (1987)

4. Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: simpler,
smaller, fast as MD5. In: Proceedings of the 11th International Conference on
Applied Cryptography and Network Security (ACNS 2013), pp. 119–135, June
2013

5. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

6. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model
checking C programs. Int. J. Softw. Tools Technol. Transf. 5(1), 49–58 (2003)

464 D. Schemmel et al.

7. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

8. Borralleras, C., Brockschmidt, M., Larraz, D., Oliveras, A., Rodŕıguez-Carbonell,
E., Rubio, A.: Proving termination through conditional termination. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 99–117. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 6

9. Burnim, J., Jalbert, N., Stergiou, C., Sen, K.: Looper: lightweight detection of
infinite loops at runtime. In: Proceedings of the 24th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2009), November 2009

10. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2008), December 2008

11. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. ACM Trans. Inf. Syst. Secur. 12(2), 10 (2008)

12. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (2013)

13. Chan, W., Anderson, R.J., Beame, P., Burns, S., Modugno, F., Notkin, D., Reese,
J.D.: Model checking large software specifications. IEEE Trans. Softw. Eng. 24(7),
498–520 (1998)

14. Chen, H.Y., Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.W.: Proving nontermina-
tion via safety. In: Proceedings of the 20th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2014), April
2014

15. Chipounov, V., Kuznetsov, V., Candea, G.: S2E: a platform for in vivo multi-path
analysis of software systems. In: Proceedings of the 16th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS 2011), March 2011

16. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

17. Clarke, E.M., Grumberg, O., Hiraishi, H., Jha, S., Long, D.E., McMillan, K.L.,
Ness, L.A.: Verification of the Futurebus+ cache coherence protocol. Formal Meth-
ods Syst. Des. 6(2), 217–232 (1995)

18. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking
for embedded ANSI-C software. IEEE Trans. Softw. Eng. 38(4), 957–974 (2012)

19. Falke, S., Merz, F., Sinz, C.: The bounded model checker LLBMC. In: ASE 2013,
pp. 706–709 (2013)

20. Ganesh, V., Dill, D.L.: A Decision procedure for bit-vectors and arrays. In: Proceed-
ings of the 19th International Conference on Computer-Aided Verification (CAV
2007), pp. 519–531, July 2007

21. Godefroid, P.: Model checking for programming languages using VeriSoft. In:
POPL 1997, pp. 174–186. ACM (1997)

22. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Proceedings of the Conference on Programming Language Design and Imple-
mentation (PLDI 2005), vol. 40, pp. 213–223, June 2005

23. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security test-
ing. ACM Queue 10(1), 20 (2012)

https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-662-54577-5_6
https://doi.org/10.1007/978-3-540-24730-2_15

Symbolic Liveness Analysis of Real-World Software 465

24. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
Proceedings of the 15th Network and Distributed System Security Symposium
(NDSS 2008), vol. 8, pp. 151–166, February 2008

25. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: Proceedings of the Conference on Programming Language Design and Imple-
mentation (PLDI 2008), June 2008

26. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.G.: Proving
non-termination. In: POPL 2008, pp. 147–158. ACM (2008)

27. Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. Int. J. Softw. Tools Technol. Transf. 2(4), 366–381 (2000)

28. Hensel, J., Giesl, J., Frohn, F., Ströder, T.: Proving termination of programs with
bitvector arithmetic by symbolic execution. In: De Nicola, R., Kühn, E. (eds.)
SEFM 2016. LNCS, vol. 9763, pp. 234–252. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-41591-8 16

29. Holzmann, G., Najm, E., Serhrouchni, A.: Spin model checking: an introduction.
Int. J. Softw. Tools Technol. Transf. 2(4), 321–327 (2000)

30. Holzmann, G.J.: Design and validation of protocols: a tutorial. Comput. Netw.
ISDN Syst. 25(9), 981–1017 (1993)

31. Kindler, E.: Safety and liveness properties: a survey. Bull. Eur. Assoc. Theor.
Comput. Sci. 53, 268–272 (1994)

32. Kling, M., Misailovic, S., Carbin, M., Rinard, M.: Bolt: on-demand infinite loop
escape in unmodified binaries. In: Proceedings of the 27th Annual Conference on
Object-Oriented Programming Systems, Languages and Applications (OOPSLA
2012), October 2012

33. Kroening, D., Ouaknine, J., Strichman, O., Wahl, T., Worrell, J.: Linear com-
pleteness thresholds for bounded model checking. In: Gopalakrishnan, G., Qadeer,
S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 557–572. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22110-1 44

34. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
Syst. Des. 19(3), 291–314 (2001)

35. Larraz, D., Nimkar, K., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Prov-
ing non-termination using Max-SMT. In: Proceedings of the 26th International
Conference on Computer-Aided Verification (CAV 2014), July 2014

36. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: Proceedings of the 2nd International Symposium on Code
Generation and Optimization (CGO 2004), San Jose, CA, USA, pp. 75–88, March
2004

37. Liew, D., Schemmel, D., Cadar, C., Donaldson, A.F., Zähl, R., Wehrle, K.:
Floating-point symbolic execution: a case study in N-version programming. In: Pro-
ceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2017), pp. 601–612, October–November 2017

38. Merz, F., Falke, S., Sinz, C.: LLBMC: bounded model checking of C and C++
programs using a compiler IR. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 146–161. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-27705-4 12

39. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Proceedings of the
14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2008), pp. 337–340, March–April 2008

40. Owicki, S., Lamport, L.: Proving liveness properties of concurrent programs.
TOPLAS 4(3), 455–495 (1982)

https://doi.org/10.1007/978-3-319-41591-8_16
https://doi.org/10.1007/978-3-319-41591-8_16
https://doi.org/10.1007/978-3-642-22110-1_44
https://doi.org/10.1007/978-3-642-27705-4_12
https://doi.org/10.1007/978-3-642-27705-4_12

466 D. Schemmel et al.

41. Sasnauskas, R., Landsiedel, O., Alizai, M.H., Weise, C., Kowalewski, S., Wehrle, K.:
KleeNet: discovering insidious interaction bugs in wireless sensor networks before
deployment. In: Proceedings of the 9th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN 2010), April 2010

42. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Proceedings of the Conference on Programming Language Design and Implemen-
tation (PLDI 2005), vol. 30, pp. 263–272, June 2005

43. Straunstrup, J., Andersen, H.R., Hulgaard, H., Lind-Nielsen, J., Behrmann, G.,
Kristoffersen, K., Skou, A., Leerberg, H., Theilgaard, N.B.: Practical verification
of embedded software. Computer 33(5), 68–75 (2000)

44. The BusyBox Developers: BusyBox: The Swiss Army Knife of Embedded Linux,
August 2017, version 1.27.2. https://busybox.net

45. The GNU Project: GNU Coreutils, January 2016, version 8.25. https://www.gnu.
org/software/coreutils

46. The GNU Project: GNU sed, February 2017, version 4.4. https://www.gnu.org/
software/sed

47. The KLEE Team: OSDI 2008 Coreutils Experiments. http://klee.github.io/docs/
coreutils-experiments/. Section 07

48. The toybox Developers: toybox, October 2017, version 0.7.5. http://landley.net/
toybox

49. Tillmann, N., De Halleux, J.: Pex-white box test generation for .NET. In: Pro-
ceedings of the 2nd International Conference on Tests and Proofs (TAP 2008), pp.
134–153, April 2008

50. Tretmans, J., Wijbrans, K., Chaudron, M.: Software engineering with formal meth-
ods: the development of a storm surge barrier control system revisiting seven myths
of formal methods. Formal Methods Syst. Des. 19(2), 195–215 (2001)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://busybox.net
https://www.gnu.org/software/coreutils
https://www.gnu.org/software/coreutils
https://www.gnu.org/software/sed
https://www.gnu.org/software/sed
http://klee.github.io/docs/coreutils-experiments/
http://klee.github.io/docs/coreutils-experiments/
http://landley.net/toybox
http://landley.net/toybox
http://creativecommons.org/licenses/by/4.0/

	Symbolic Liveness Analysis of Real-World Software
	1 Introduction
	1.1 Key Contributions
	1.2 Structure

	2 Related Work
	3 Liveness
	4 Finding Lassos
	4.1 Symbolic Execution
	4.2 Fingerprinting
	4.3 Algorithm Overview

	5 Efficient Implementation of the Algorithm
	5.1 LLVM Intermediate Representation
	5.2 Fragments
	5.3 Fingerprint Tracking
	5.4 Avoiding Comparisons

	6 Evaluation
	6.1 GNU Utilities
	6.2 BusyBox
	6.3 Toybox
	6.4 Scaling with the Time Limit
	6.5 Summary

	7 Limitations
	8 Conclusion and Outlook
	References

