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Paris, France

cesar.rodriguez@lipn.fr

Abstract. We describe a technique for systematic testing of multi-
threaded programs. We combine Quasi-Optimal Partial-Order Reduc-
tion, a state-of-the-art technique that tackles path explosion due to
interleaving non-determinism, with symbolic execution to handle data
non-determinism. Our technique iteratively and exhaustively finds all
executions of the program. It represents program executions using partial
orders and finds the next execution using an underlying unfolding seman-
tics. We avoid the exploration of redundant program traces using cutoff
events. We implemented our technique as an extension of KLEE and eval-
uated it on a set of large multi-threaded C programs. Our experiments
found several previously undiscovered bugs and undefined behaviors in
memcached and GNU sort, showing that the new method is capable of
finding bugs in industrial-size benchmarks.

Keywords: Software testing · Symbolic Execution · Partial-Order
Reduction

1 Introduction

Advances in formal testing and the increased availability of affordable concur-
rency have spawned two opposing trends: While it has become possible to ana-
lyze increasingly complex sequential programs in new and powerful ways, many
projects are now embracing parallel processing to fully exploit modern hard-
ware, thus raising the bar for practically useful formal testing. In order to make
formal testing accessible to software developers working on parallel programs,
two main problems need to be solved. Firstly, a significant portion of the API
in concurrency libraries such as libpthread must be supported. Secondly, the
analysis must be accessible to non-experts in formal verification. Currently, this
niche is mostly occupied by manual and fuzz testing, oftentimes combined with
dynamic concurrency checkers such as ThreadSanitizer [45] or Helgrind [2].
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Data non-determinism in sequential and concurrent programs, and scheduling
non-determinism are two major sources of path explosion in program analysis.
Symbolic execution [10,11,22,29,38] is a technique to reason about input data in
sequential programs. It is capable of dealing with real-world programs. Partial-
Order Reductions (PORs) [5,19,20,41] are a large family of techniques to explore
a reduced number of thread interleavings without missing any relevant behavior.

In this paper we propose a technique that combines symbolic execution and
a Quasi-Optimal POR [35]. In essence, our approach (1) runs the program using
a symbolic executor, (2) builds a partial order representing the occurrence of
POSIX threading synchronization primitives (library functions pthread *) seen
during that execution, (3) adds the partial order to an underlying tree-like,
unfolding [32,41] data structure, (4) computes the first events of the next partial
orders to explore, and (5) selects a new partial order to explore and starts again.
We use cutoff events [32] to prune the exploration of different traces that reach
the same state, thus natively dealing with non-terminating executions.

We implemented our technique as an extension of KLEE. During the evalua-
tion of this prototype we found nine bugs (that we attribute to four root causes)
in the production version of memcached. All of these bugs have since been con-
firmed by the memcached maintainers and are fixed as of version 1.5.21. Our tool
handles a significant portion of the POSIX threading API [4], including barriers,
mutexes and condition variables without being significantly harder to use than
common fuzz testing tools.

The main challenge that our approach needs to address is that of scalability
in the face of an enormous state space. We tackle this challenge by detecting
whenever any two Mazurkiewicz traces reach the same program state to only
further explore one of them. Additionally, we exploit the fact that data races
on non-atomic variables cause undefined behavior in C [25, § 5.1.2.4/35], which
means that any unsynchronized memory access is, strictly speaking, a bug. By
adding a data race detection algorithm, we can thereby restrict thread schedul-
ing decisions to synchronization primitives, such as operations on mutexes and
condition variables, which significantly reduces the state space.

This work has three core contributions, the combination of which enables
the analysis of real-world multi-threaded programs (see also Sect. 6 for related
work):

1. A partial-order reduction algorithm capable of handling real-world POSIX
programs that use an arbitrary amount of threads, mutexes and condition
variables. Our algorithm continues analysis in the face of deadlocks.

2. A cutoff algorithm that recognizes whenever two Mazurkiewicz traces reach
the same program state, as identified by its actual memory contents. This sig-
nificantly prunes the search space and even enables the partial-order reduction
to deal with non-terminating executions.

3. An implementation that finds real-world bugs.

We also present an extended, more in-depth version of this paper [42].
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2 Overview

The technique proposed in this paper can be described as a process of 5 concep-
tual steps, each of which we describe in a section below:

Thread 1
1 atomic_int a = in();
2 atomic_int c = 3;

Thread 2
1 atomic_int b = c;
2 if(a >= 0)
3 puts("y");
4 else
5 puts("n");

(a)

1 1, a=in()

2 1, c=3

32, b=c

42, a>=0

52, "y" (b)

1 1, a=in()

2 1, c=3

32, b=c

62, a<0

72, "n" (c)

1
1, a=in()

2, b=c
8

9
1, c=3

2, a>=0
10

2, "y"
11

(d)

1
1, a=in()

2, b=c
8

9
1, c=3

2, a<0
12

2, "n"
13

(e)

2, b=c
8

2, a>=0
14

15
1, a=in()

161, c=3

2, "y"
17
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(j)
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(k)
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14
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(l)

Fig. 1. A program (a) with its 5 partial-order runs (b–f), its unfolding (g) and the 5
steps used by our algorithm to visit the unfolding (h–l).

2.1 Sequential Executions

Consider the program shown in Fig. 1a. Assume that all variables are initially
set to zero. The statement a = in() initializes variable a non-deterministically.
A run of the program is a sequence of actions, i.e., pairs 〈i, s〉 where i ∈ N

identifies a thread that executes a statement s. For instance, the sequence

σ1 := 〈1, a=in()〉, 〈1, c=3〉, 〈2, b=c〉, 〈2, a<0〉, 〈2, puts("n")〉
is a run of Fig. 1a. This run represents all program paths where both statements
of thread 1 run before the statements of thread 2, and where the statement a =
in() initializes variable a to a negative number. In our notion of run, concurrency
is represented explicitly (via thread identifiers) and data non-determinism is
represented symbolically (via constraints on program variables). To keep things
simple the example only has atomic integers (implicitly guarded by locks) instead
of POSIX synchronization primitives.

2.2 Independence Between Actions and Partial-Order Runs

Many POR techniques use a notion called independence [20] to avoid exploring
concurrent interleavings that lead to the same state. An independence relation
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associates pairs of actions that commute (running them in either order results in
the same state). For illustration purposes, in Fig. 1 let us consider two actions as
dependent iff either both of them belong to the same thread or one of them writes
into a variable which is read/written by the other. Furthermore, two actions will
be independent iff they are not dependent.

A sequential run of the program can be viewed as a partial order when we
take into account the independence of actions. These partial orders are known as
dependency graphs in Mazurkiewicz trace theory [31] and as partial-order runs
in this paper. Figures 1b to 1f show all the partial-order runs of Fig. 1a. The
partial-order run associated to the run σ1 above is Fig. 1c. For

σ2 := 〈2, b=c〉, 〈2, a>=0〉, 〈1, a=in()〉, 〈2, puts("y")〉, 〈1, c=3〉,

we get the partial order shown in Fig. 1f.

2.3 Unfolding: Merging the Partial Orders

An unfolding [16,32,37] is a tree-like structure that uses partial orders to rep-
resent concurrent executions and conflict relations to represent thread interfer-
ence and data non-determinism. We can define unfolding semantics for programs
in two conceptual steps: (1) identify isomorphic events that occur in different
partial-order runs; (2) bind the partial orders together using a conflict relation.

Two events are isomorphic when they are structurally equivalent, i.e., they
have the same label (run the same action) and their causal (i.e., happens-before)
predecessors are (transitively) isomorphic. The number within every event in
Figs. 1b to 1f identifies isomorphic events.

Isomorphic events from different partial orders can be merged together using
a conflict relation for the un-merged parts of those partial orders. To understand
why conflict is necessary, consider the set of events C := {1, 2}. It obviously
represents part of a partial-order run (Fig. 1c, for instance). Similarly, events
C ′ := {1, 8, 9} represent (part of) a run. However, their union C ∪ C ′ does not
represent any run, because (1) it does not describe what happens-before relation
exists between the dependent actions of events 2 and 8, and (2) it executes
the statement c=3 twice. Unfoldings fix this problem by introducing a conflict
relation between events. Conflicts are to unfoldings what branches are to trees.
If we declare that events 2 and 8 are in conflict, then any conflict-free (and
causally-closed) subset of C ∪ C ′ is exactly one of the original partial orders.
This lets us merge the common parts of multiple partial orders without losing
track of the original partial orders.

Figure 1g represents the unfolding of the program (after merging all 5 partial-
order runs). Conflicts between events are represented by dashed red lines. Each
original partial order can be retrieved by taking a (⊆-maximal) set of events
which is conflict-free (no two events in conflict are in the set) and causally closed
(if you take some event, then also take all its causal predecessors).

For instance, the partial order in Fig. 1d can be retrieved by resolving the
conflicts between events 1 vs. 14, 2 vs. 8, 10 vs. 12 in favor of, resp., 1, 8, 10.
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Resolving in favor of 1 means that events 14 to 17 cannot be selected, because
they causally succeed 14. Similarly, resolving in favor of 8 and 10 means that
only events 9 and 11 remain eligible, which hold no conflicts among them—all
other events are causal successors of either 2 or 12.

2.4 Exploring the Unfolding

Since the unfolding represents all runs of the program via a set of compactly-
merged, prefix-sharing partial orders, enumerating all the behaviors of the pro-
gram reduces to exploring all partial-order runs represented in its unfolding. Our
algorithm iteratively enumerates all ⊆-maximal partial-order runs.

In simplified terms, it proceeds as follows. Initially we explore the black
events shown in Fig. 1h, therefore exploring the run shown in Fig. 1b. We discover
the next partial order by computing the so-called conflicting extensions of the
current partial order. These are, intuitively, events in conflict with some event
in our current partial order but such that all its causal predecessors are in our
current partial order. In Fig. 1h these are shown in circles, events 8 and 6.

We now find the next partial order by (1) selecting a conflicting extension,
say event 6, (2) removing all events in conflict with the selected extension and
their causal successors, in this case events 4 and 5, and (3) expanding the partial
order until it becomes maximal, thus exploring the partial order Fig. 1c, shown
as the black events of Fig. 1i. Next we select event 8 (removing 2 and its causal
successors) and explore the partial order Fig. 1d, shown as the black events
of Fig. 1j. Note that this reveals two new conflicting extensions that were hidden
until now, events 12 and 14 (hidden because 8 is a causal predecessor of them,
but was not in our partial order). Selecting either of the two extensions makes
the algorithm explore the last two partial orders.

2.5 Cutoff Events: Pruning the Unfolding

When the program has non-terminating runs, its unfolding will contain infi-
nite partial orders and the algorithm above will not finish. To analyze non-
terminating programs we use cutoff events [32]. In short, certain events do not
need to be explored because they reach the same state as another event that
has been already explored using a shorter (partial-order) run. Our algorithm
prunes the unfolding at these cutoff events, thus handling terminating and non-
terminating programs that repeatedly reach the same state.

3 Main Algorithm

This section formally describes the approach presented in this paper.
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3.1 Programs, Actions, and Runs

Let P := 〈T,L, C〉 represent a (possibly non-terminating) multi-threaded POSIX
C program, where T is the set of statements, L is the set of POSIX mutexes
used in the program, and C is the set of condition variables. This is a deliber-
ately simplified presentation of our program syntax, see [42] for full details. We
represent the behavior of each statement in P by an action, i.e., a pair 〈i, b〉 in
A ⊆ N × B, where i ≥ 1 identifies the thread executing the statement and b is
the effect of the statement. We consider the following effects:

B := ({loc} × T ) ∪ ({acq, rel} × L) ∪ ({sig} × C × N)

∪ ({bro} × C × 2N) ∪ ({w1,w2} × C × L)

Below we informally explain the intent of an effect and how actions of different
effects interleave with each other. In [42] we use actions and effects to define
labeled transition system semantics to P . Below we also (informally) define an
independence relation (see Sect. 2.2) between actions.

Local Actions. An action 〈i, 〈loc, t〉〉 represents the execution of a local state-
ment t from thread i, i.e., a statement which manipulates local variables. For
instance, the actions labeling events 1 and 3 in Fig. 2b are local actions. Note
that local actions do not interfere with actions of other threads. Consequently,
they are only dependent on actions of the same thread.

Mutex Lock/Unlock. Actions 〈i, 〈acq, l〉〉 and 〈i, 〈rel, l〉〉 respectively represent
that thread i locks or unlocks mutex l ∈ L. The semantics of these actions cor-
respond to the so-called NORMAL mutexes in the POSIX standard [4]. Actions
of 〈acq, l〉 or 〈rel, l〉 effect are only dependent on actions whose effect is an opera-
tion on the same mutex l (acq, rel, w1 or w2, see below). For instance the action
of event 4 (rel) in Fig. 2b depends on the action of event 6 (acq).

Wait on Condition Variables. The occurrence of a pthread cond wait(c, l)
statement is represented by two separate actions of effect 〈w1, c, l〉 and 〈w2, c, l〉.
An action 〈i, 〈w1, c, l〉〉 represents that thread i has atomically released the lock l
and started waiting on condition variable c. An action 〈i, 〈w2, c, l〉〉 indicates
that thread i has been woken up by a signal or broadcast operation on c and
that it successfully re-acquired mutex l. For instance the action 〈1, 〈w1, c,m〉〉 of
event 10 in Fig. 2c represents that thread 1 has released mutex m and is waiting
for c to be signaled. After the signal happens (event 12) the action 〈1, 〈w2, c,m〉〉
of event 14 represents that thread 1 wakes up and re-acquires mutex m. An
action 〈i, 〈w1, c, l〉〉 is dependent on any action whose effect operates on mutex l
(acq, rel, w1 or w2) as well as signals directed to thread i (〈sig, c, i〉, see below),
lost signals (〈sig, c, 0〉, see below), and any broadcast (〈bro, c,W 〉 for any W ⊆ N,
see below). Similarly, an action 〈i, 〈w2, c, l〉〉 is dependent on any action whose
effect operates on lock l as well as signals and broadcasts directed to thread i
(that is, either 〈sig, c, i〉 or 〈bro, c,W 〉 when i ∈ W ).
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Signal/Broadcast on Condition Variables. An action 〈i, 〈sig, c, j〉〉, with j ≥ 0
indicates that thread i executed a pthread cond signal(c) statement. If j = 0
then no thread was waiting on condition variable c, and the signal had no effect,
as per the POSIX semantics. We refer to these as lost signals. Example: events 7
and 17 in Fig. 2b and 2d are labeled by lost signals. In both cases thread 1 was
not waiting on the condition variable when the signal happened. However, when
j ≥ 1 the action represents that thread j wakes up by this signal. Whenever
a signal wakes up a thread j ≥ 1, we can always find a (unique) w1 action of
thread j that happened before the signal and a unique w2 action in thread j
that happens after the signal. For instance, event 12 in Fig. 2c signals thread 1,
which went sleeping in the w1 event 10 and wakes up in the w2 event 14. Simi-
larly, an action 〈i, 〈bro, c,W 〉〉, with W ⊆ N indicates that thread i executed a
pthread cond broadcast(c) statement and any thread j such that j ∈ W was
woken up. If W = ∅, then no thread was waiting on condition variable c (lost
broadcast). Lost signals and broadcasts on c depend on any action of 〈w1, c, ·〉
effect as well as any non-lost signal/broadcast on c. Non-lost signals and broad-
casts on c that wake up thread j depend1 on w1 and w2 actions of thread j as
well as any signal/broadcast (lost or not) on the same condition variable.

A run of P is a sequence of actions in A∗ which respects the constraints
stated above for actions. For instance, a run for the program shown in Fig. 2a is
the sequence of actions which labels any topological order of the events shown
in any partial order in Fig. 2b to 2e. The sequence below,

〈1, 〈loc, x=in()〉〉, 〈2, 〈loc, y=1〉〉, 〈1, 〈acq,m〉〉,
〈1, 〈loc, x>=0〉〉, 〈1, 〈rel,m〉〉, 〈2, 〈acq,m〉〉

is a run of Fig. 2a. Naturally, if σ ∈ A∗ is a run, any prefix of σ is also a run.
Runs explicitly represent concurrency, using thread identifiers, and symbolically
represent data non-determinism, using constraints, as illustrated by the 1st and
4th actions of the run above. We let runs(P ) denote the set of all runs of P .

A concrete state of P is a tuple that represents, intuitively, the program
counters of each thread, the values of all memory locations, the mutexes locked
by each thread, and, for each condition variable, the set of threads waiting for
it (see [42] for a formal definition). Since runs represent operations on symbolic
data, they reach a symbolic state, which conceptually corresponds to a set of
concrete states of P .

The state of a run σ, written state(σ), is the set of all concrete states of P
that are reachable when the program executes the run σ. For instance, the run σ′

given above reaches a state consisting on all program states where y is 1, x is
a non-negative number, thread 2 owns mutex m and its instruction pointer is at
line 3, and thread 1 has finished. We let reach(P ) :=

⋃
σ∈runs(P ) state(σ) denote

the set of all reachable states of P .

1 The formal definition is slightly more complex, see [42] for the details.
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3.2 Independence

In the previous section, given an action a ∈ A we informally defined the set of
actions which are dependent on a, therefore indirectly defining an independence
relation. We now show that this relation is a valid independence [19,41]. Intu-
itively, an independence relation is valid when every pair of actions it declares as
independent can be executed in any order while still producing the same state.

Our independence relation is valid only for data-race-free programs. We say
that P is data-race-free iff any two local actions a := 〈i, 〈loc, t〉〉 and a′ :=
〈i′, 〈loc, t′〉〉 from different threads (i 	= i′) commute at every reachable state
of P . See [42] for additional details. This ensures that local statements of different
threads of P modify the memory without interfering each other.

Thread 1
1 x = in();
2 pthread_mutex_lock(m);
3 if(x < 0)
4 pthread_cond_wait(c, m);
5 pthread_mutex_unlock(m);

Thread 2
1 y = 1;
2 pthread_mutex_lock(m);
3 pthread_cond_signal(c, m);
4 pthread_mutex_unlock(m);

(a)

1
loc, x=in()

2 acq,m

3 loc, x>=0

4 rel,m

loc, y=1
5

6acq,m

7sig, c, 0

8rel,m

(b)

1
loc, x=in()

2 acq,m

9 loc, x<0

10 w1, c,m

loc, y=1
5

11acq,m

12sig, c, 1

13rel,m

14 w2, c,m

15 rel,m (c)

1
loc, x=in()

loc, y=1
5

16acq,m

17sig, c, 0

18rel,m

19 acq,m

20 loc, x>=0

21 rel,m

(d)

1
loc, x=in()

loc, y=1
5

16acq,m

17sig, c, 0

18rel,m

19 acq,m

22 loc, x<0

23 w1, c,m

(deadlock!)

(e)

Fig. 2. A program and its four partial-order runs.

Theorem 1. If P is data-race-free, then the independence relation defined in
Sect. 3.1 is valid.

Proof. See [42].

Our technique does not use data races as a source of thread interference
for partial-order reduction. It will not explore two execution orders for the two
statements that exhibit a data race. However, it can be used to detect and report
data races found during the POR exploration, as we will see in Sect. 4.4.

3.3 Partial-Order Runs

A labeled partial-order (LPO) is a tuple 〈X,<, h〉 where X is a set of events,
< ⊆ X ×X is a causality (a.k.a., happens-before) relation, and h : X → A labels
each event by an action in A.

A partial-order run of P is an LPO that represents a run of P without
enforcing an order of execution on actions that are independent. All partial-
order runs of Fig. 2a are shown in Fig. 2b to 2e.
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Given a run σ of P , we obtain the corresponding partial-order run Eσ :=
〈E,<, h〉 by the following procedure: (1) initialize Eσ to be the only totally-
ordered LPO that consists of |σ| events where the i-th event is labeled by the
i-th action of σ; (2) for every two events e, e′ such that e < e′, remove the pair
〈e, e′〉 from < if h(e) is independent from h(e′); (3) restore transitivity in < (i.e.,
if e < e′ and e′ < e′′, then add 〈e, e′′〉 to <). The resulting LPO is a partial-order
run of P .

Furthermore, the originating run σ is an interleaving of Eσ. Given some
LPO E := 〈E,<, h〉, an interleaving of E is the sequence that labels any topo-
logical ordering of E . Formally, it is any sequence h(e1), . . . , h(en) such that
E = {e1, . . . , en} and ei < ej =⇒ i < j. We let inter(E) denote the set of all
interleavings of E . Given a partial-order run E of P , the interleavings inter(E)
have two important properties: every interleaving in inter(E) is a run of P , and
any two interleavings σ, σ′ ∈ inter(E) reach the same state state(σ) = state(σ′).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

(a)

∅, ∅, ∅, 1

1}, ∅, ∅, 2

1, 2}, ∅, ∅, 3

1, 2, 3}, ∅, ∅, 5

1, 2, 3, 5}, ∅, ∅, 4

1, 2}, {3}, {9}, 9

1, 2, 9}, {3}, ∅, 10

1}, {2}, {5, 16}, 5

1, 5}, {2}, {16}, 16

1, 5, 16}, {2}, ∅, 17

1, 5, 16, 17, 18, 19}, {2}, ∅, 20Fig. 2b Fig. 2c

Fig. 2d Fig. 2e

(b)

Fig. 3. (a): unfolding of the program in Fig. 2a; (b): its POR exploration tree.

3.4 Prime Event Structures

We use unfoldings to give semantics to multi-threaded programs. Unfoldings are
Prime Event Structures [37], tree-like representations of system behavior that
use partial orders to represent concurrent interaction.

Figure 3a depicts an unfolding of the program in Fig. 2a. The nodes are events
and solid arrows represent causal dependencies: events 1 and 4 must fire before
8 can fire. The dotted line represents conflicts: 2 and 5 are not in conflict and
may occur in any order, but 2 and 16 are in conflict and cannot occur in the
same (partial-order) run.

Formally, a Prime Event Structure [37] (PES) is a tuple E := 〈E,<,#, h〉
with a set of events E, a causality relation < ⊆ E × E, which is a strict partial
order, a conflict relation # ⊆ E × E that is symmetric and irreflexive, and a
labeling function h : E → A.
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The causes of an event �e := {e′ ∈ E : e′ < e} are the least set of events
that must fire before e can fire. A configuration of E is a finite set C ⊆ E that
is causally closed (�e ⊆ C for all e ∈ C), and conflict-free (¬(e # e′) for all
e, e′ ∈ C). We let conf (E) denote the set of all configurations of E . For any e ∈ E,
the local configuration of e is defined as [e] := �e∪{e}. In Fig. 3a, the set {1, 2} is
a configuration, and in fact it is a local configuration, i.e., [2] = {1, 2}. The local
configuration of event 6 is {1, 2, 3, 4, 5, 6}. Set {2, 5, 16} is not a configuration,
because it is neither causally closed (1 is missing) nor conflict-free (2 # 16).

3.5 Unfolding Semantics for Programs

Given a program P , in this section we define a PES UP such that every config-
uration of UP is a partial-order run of P .

Let E1 := 〈E1, <1, h1〉, . . . , En := 〈En, <n, hn〉 be the collection of all the
partial-order runs of P . The events of UP are the equivalence classes of the
structural equality relation that we intuitively described in Sect. 2.3.

Two events are structurally equal iff their canonical name is the same.
Given some event e ∈ Ei in some partial-order run Ei, the canonical name
cn(e) of e is the pair 〈a,H〉 where a := hi(e) is the executed action and
H := {cn(e′) : e′ <i e} is the set of canonical names of those events that causally
precede e in Ei. Intuitively, canonical names indicate that action h(e) runs
after the (transitively canonicalized) partially-ordered history preceding e. For
instance, in Fig. 3a for events 1 and 6 we have cn(1) = 〈〈1, 〈loc, a=in()〉〉, ∅〉, and
cn(6) = 〈〈2, 〈acq,m〉〉, {cn(1), cn(2), cn(3), cn(4), cn(5)}〉. Actually, the number
within every event in Fig. 2b to 2e identifies (is in bijective correspondence with)
its canonical name. Event 19 in Fig. 2d is the same event as event 19 in Fig. 2e
because it fires the same action (〈1, 〈acq,m〉〉) after the same causal history
({1, 5, 16, 17, 18}). Event 2 in Fig. 2c and 19 in Fig. 2d are not the same event
because while h(2) = h(19) = 〈1, 〈acq,m〉〉 they have a different causal his-
tory ({1} vs. {1, 5, 16, 17, 18}). Obviously events 4 and 6 in Fig. 2b are different
because h(4) 	= h(6). We can now define the unfolding of P as the only PES
UP := 〈E,<,#, h〉 such that

– E := {cn(e) : e ∈ E1 ∪ . . . ∪ En} is the set of canonical names of all events;
– Relation < ⊆ E ×E is the union <1∪ . . .∪<n of all happens-before relations;
– Any two events e, e′ ∈ E of UP are in conflict, e # e′, when e 	= e′, and

¬(e < e′), and ¬(e′ < e), and h(e) is dependent on h(e′).

Figure 3a shows the unfolding produced by merging all 4 partial-order runs
in Fig. 2b to 2e. Note that the configurations of UP are partial-order runs of P .
Furthermore, the ⊆-maximal configurations are exactly the 4 originating partial
orders. It is possible to prove that UP is a semantics of P . In [42] we show that
(1) UP is uniquely defined, (2) any interleaving of any local configuration of UP

is a run of P , (3) for any run σ of P there is a configuration C of UP such that
σ ∈ inter(C).
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3.6 Conflicting Extensions

Our technique analyzes P by iteratively constructing (all) partial-order runs
of P . In every iteration we need to find the next partial order to explore. We
use the so-called conflicting extensions of a configuration to detect how to start
a new partial-order run that has not been explored before.

Given a configuration C of UP , an extension of C is any event e ∈ E \C such
that all the causal predecessors of e are in C. We denote the set of extensions of C
as ex (C) := {e ∈ E : e /∈ C ∧ �e ⊆ C}. The enabled events of C are extensions
that can form a larger configuration: en(C) := {e ∈ ex (C) : C ∪ {e} ∈ conf (E)}.
For instance, in Fig. 3a, the (local) configuration [6] has 3 extensions, ex ([6]) =
{7, 9, 16} of which, however, only event 7 is enabled: en([6]) = {7}. Event 19 is
not an extension of [6] because 18 is a causal predecessor of 19, but 18 	∈ [6]. A
conflicting extension of C is an extension for which there is at least one e′ ∈ C
such that e # e′. The (local) configuration [6] from our previous example has two
conflicting extensions, events 9 and 16. A conflicting extension is, intuitively, an
incompatible addition to the configuration C, an event e that cannot be executed
together with C (without removing e′ and its causal successors from C). We
denote by cex (C) the set of all conflicting extensions of C, which coincides with
the set of all extensions that are not enabled: cex (C) := ex (C) \ en(C).

Algorithm 1: Conflicting extensions for acq/w2 events.

1 Function cex-acq-w2(e)
2 Assume that e is 〈〈i, 〈acq, l〉〉, K〉 or 〈〈i, 〈w2, c, l〉〉, K〉
3 R := ∅
4 et := last-of(K, i)
5 if effect(e) = 〈acq, l〉 then
6 P := [et]
7 else
8 es := last-notify(e, c, i)
9 P := [et] ∪ [es]

10 em := last-lock(P, l)
11 er := last-lock(K, l)
12 if em = er then return R
13 if em = ⊥ ∨ effect(em) ∈ {〈rel, l〉, 〈w1, ·, l〉} then
14 Add 〈h(e), P 〉 to R
15 foreach event e′ ∈ K \ (P ∪ {er}) do
16 if effect(e′) ∈ {〈rel, l〉, 〈w1, ·, l〉} then
17 Add 〈h(e), P ∪ [e′]〉 to R

18 return R

Our technique discovers new conflicting extension events by trying to revert
the causal order of certain events in C. Owing to space limitations we only
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explain how the algorithm handles events of acq and w2 effect ([42] presents the
remaining 4 procedures of the algorithm). Algorithm1 shows the procedure that
handles this case. It receives an event e of acq or w2 effect (line 2). We build and
return a set of conflicting extensions, stored in variable R. Events are added to R
in line 14 and 17. Note that we define events using their canonical name. For
instance, in line 14 we add a new event whose action is h(e) and whose causal
history is P . Note that we only create events that execute action h(e). Concep-
tually speaking, the algorithm simply finds different causal histories (variables P
and e′) within the set K = �e to execute action h(e).

Procedure last-of(C, i) returns the only <-maximal event of thread i in C;
last-notify(e, c, i) returns the only immediate <-predecessor e′ of e such that
the effect of h(e′) is either 〈sig, c, i〉 or 〈bro, c, S〉 with i ∈ S; finally, procedure
last-lock(C, l) returns the only <-maximal event that manipulates lock l in C
(an event of effect acq, rel, w1 or w2), or ⊥ if no such event exists. See [42] for
additional details.

Algorithm 2: Main algorithm. See Sect. 3.7.

1 Global variables: U := ∅ (set of events of UP ) and N := ∅ (set of tree nodes)

2 Procedure explore()

3 nod(∅, ∅, ∅)
4 repeat
5 Select n := 〈C, D, A, e〉 from N
6 Add cex (C) to U
7 if ena(C) ⊆ D then
8 continue

9 if n has no left child then
10 n′ := nod(C ∪ {e}, D, A \ {e})
11 Make n′ the left child of n

12 if n has no right child then
13 J := alt(C, D ∪ {e})
14 if J 
= ∅ then
15 n′ := nod(C, D ∪ {e}, J \ C)

16 Make n′ the right child of n

17 until fixed point (N is stable)

18 Function nod(C, D, A)

19 if A 
= ∅ then
20 e := select from ena(C) ∩ A

21 else
22 e := select from ena(C) \ D

23 n := 〈C, D, A, e〉
24 Add n to N
25 return n

26 Function ena(C)

27 return {e ∈ en(C) : ¬cutoff(e)}
28 Function alt(C, D)

29 Let e be some event in D ∩ en(C)
30 S := {e′ ∈ U : e′ # e ∧ [e′] ∩ D = ∅}
31 S := {e′ ∈ S : [e′] ∪ C is a config.}
32 if S = ∅ then return ∅
33 Select some event e′ from S
34 return [e′]

3.7 Exploring the Unfolding

This section presents an algorithm that explores the state space of P by
constructing all maximal configurations of UP . In essence, our procedure is
an improved Quasi-Optimal POR algorithm [35], where the unfolding is not
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explored using a DFS traversal, but a user-defined search order. This enables
us to build upon the preexisting exploration heuristics (“searchers”) in KLEE
rather than having to follow a strict DFS exploration of the unfolding.

Our algorithm explores one configuration of UP at a time and organizes the
exploration into a binary tree. Figure 3b shows the tree explored for the unfolding
shown in Fig. 3a. A tree node is a tuple n := 〈C,D,A, e〉 that represents both
the exploration of a configuration C of UP and a choice to execute, or not, event
e ∈ en(C). Both D (for disabled) and A (for add) are sets of events.

The key insight of this tree is as follows. The subtree rooted at a given node n
explores all configurations of UP that include C and exclude D, with the following
constraint: n’s left subtree explores all configurations including event e and n’s
right subtree explores all configuration excluding e. Set A is used to guide the
algorithm when exploring the right subtree. For instance, in Fig. 3b the subtree
rooted at node n := 〈{1, 2}, ∅, ∅, 3〉 explores all maximal configurations that
contain events 1 and 2 (namely, those shown in Fig. 2b and 2c). The left subtree
of n explores all configurations including {1, 2, 3} (Fig. 2b) and the right subtree
all of those including {1, 2} but excluding 3 (Fig. 2c).

Algorithm 2 shows a simplified version of our algorithm. The complete ver-
sion, in [42], specifies additional details including how nodes are selected for
exploration and how they are removed from the tree. The algorithm constructs
and stores the exploration tree in the variable N , and the set of currently known
events of UN in variable U . At the end of the exploration, U will store all events
of UN and the leafs of the exploration tree in N will correspond to the maximal
configurations of UN .

The tree is constructed using a fixed-point loop (line 4) that repeats the
following steps as long as they modify the tree: select a node 〈C,D,A, e〉 in the
tree (line 5), extend U with the conflicting extensions of C (line 6), check if the
configuration is ⊆-maximal (line 7), in which case there is nothing left to do,
then try to add a left (line 9) or right (line 12) child node.

The subtree rooted at the left child node will explore all configurations that
include C ∪ {e} and exclude D (line 10); the right subtree will explore those
including C and excluding D ∪ {e} (line 15), if any of them exists, which we
detect by checking (line 14) if we found a so-called alternative [41].

An alternative is a set of events which witnesses the existence of some maxi-
mal configuration in UP that extends C without including D ∪ {e}. Computing
such witness is an NP-complete problem, so we use an approximation called
k-partial alternatives [35], which can be computed in P-time and works well
in practice. Our procedure alt specifically computes 1-partial alternatives: it
selects k = 1 event e from D ∩ en(C), searches for an event e′ in conflict with e
(we have added all known candidates in line 6, using the algorithms of Sect. 3.6)
that can extend C (i.e., such that C ∪ [e′] is a configuration), and returns it.
When such an event e′ is found (line 33), some events in its local configuration
[e′] become the A-component of the right child node (line 15), and the leftmost
branch rooted at that node will re-execute those events (as they will be selected
in line 20), guiding the search towards the witnessed maximal configuration.
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For instance, in Fig. 3b, assume that the algorithm has selected node n =
〈{1}, ∅, ∅, 2〉 at line 5 when event 16 is already in U . Then a call to alt({1}, {2})
is issued at line 13, event e = 2 is selected at line 29 and event e′ = 16 gets
selected at line 33, because 2 # 16 and [16] ∪ {1} is a configuration. As a
result, node n′ = 〈{1}, {2}, {5, 16}, 5〉 becomes the right child of n in line 15,
and the leftmost branch rooted at n′ adds {5, 16} to C, leading to the maximal
configuration Fig. 2d.

3.8 Cutoffs and Completeness

All interleavings of a given configuration always reach the same state, but inter-
leavings of different configurations can also reach the same state. It is possible
to exclude certain such redundant configurations from the exploration without
making the algorithm incomplete, by using cutoff events [32].

Intuitively, an event is a cutoff if we have already visited another event that
reaches the same state with a shorter execution. Formally, in Algorithm 2, line
27 we let cutoff(e) return true iff there is some e′ ∈ U such that state([e]) =
state([e′]) and |[e′]| < |[e]|. This makes Algorithm 2 ignore cutoff events and any
event that causally succeeds them. Sect. 4.2 explains how to effectively implement
the check state([e]) = state([e′]).

While cutoffs prevent the exploration of redundant configurations, the anal-
ysis is still complete: it is possible to prove that every state reachable via a
configuration with cutoffs is also reachable via a configuration without cutoffs.
Furthermore, cutoff events not only reduce the exploration of redundant configu-
rations, but also force the algorithm to terminate for non-terminating programs
that run on bounded memory.

Theorem 2 (Correctness). For any reachable state s ∈ reach(P ), Algo-
rithm2 explores a configuration C such that for some C ′ ⊆ C it holds that
state(C ′) = s. Furthermore, it terminates for any program P such that reach(P )
is finite.

A proof sketch is available in [42]. Naturally, since Algorithm2 explores UP ,
and UP is an exact representation of all runs of P , then Algorithm 2 is also
sound : any event constructed by the algorithm (added to set U) is associated
with a real run of P .

4 Implementation

We implemented our approach on top of the symbolic execution engine KLEE [10],
which was previously restricted to sequential programs. KLEE already provides
a minimal POSIX support library that we extended to translate calls to pthread
functions to their respective actions, enabling us to test real-world multi-threaded
C programs. We also extended already available functionality to make it thread-
safe, e.g., by implementing a global file system lock that ensures that concurrent
reads from the same file descriptor do not result in unsafe behavior. The source
code of our prototype is available at https://github.com/por-se/por-se.

https://github.com/por-se/por-se
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4.1 Standby States

When a new alternative is explored, a symbolic execution state needs to be
computed to match the new node in the POR tree. However, creating it from
scratch requires too much time and keeping a symbolic execution state around
for each node consumes significant amounts of memory. Instead of committing to
either extreme, we store standby states at regular intervals along the exploration
tree and, when necessary, replay the closest standby state. This way, significantly
fewer states are kept in memory without letting the replaying of previously
computed operations dominate the analysis either.

4.2 Hash-Based Cutoff Events

Schemmel et al. presented [43] an incremental hashing scheme to identify infi-
nite loops during symbolic execution. The approach detects when the program
under test can transition from any one state back to that same state. Their
scheme computes fragments for small portions of the program state, which are
then hashed individually, and combined into a compound hash by bitwise xor
operations. This compound hash, called a fingerprint, uniquely (modulo hash
collisions) identifies the whole state of the program under test. We adapt this
scheme to provide hashes that identify the concurrent state of parallel programs.

To this end, we associate each configuration with a fingerprint that describes
the whole state of the program at that point. For example, if the program
state consists of two variables, x = 3 and y = 5, the fingerprint would be
fp = hash ("x=3")⊕hash ("y=5"). When one fragment changes, e.g., from x = 3
to x = 4, the old fragment hash needs to be replaced with the new one. This
operation can be performed as fp′ = fp ⊕ hash ("x=3") ⊕ hash ("x=4") as the
duplicate fragments for x = 3 will cancel out. To quickly compute the finger-
print of a configuration, we annotate each event with an xor of all of these update
operations that were done on its thread. Computing the fingerprint of a config-
uration now only requires xor-ing the values from its thread-maximal events,
which will ensure that all changes done to each variable are accounted for, and
cancel out one another so that only the fragment for the last value remains.

Any two local configurations that have the same fingerprint represent the
same program state; each variable, program counter, etc., has the same value.
Thus, it is not necessary to continue exploring both—we have found a potential
cutoff point, which the POR algorithm will treat accordingly (Sect. 3.8).

4.3 Deterministic and Repeatable Allocations

KLEE usually uses the system allocator to determine the addresses of objects
allocated by the program under test. But it also provides a (more) deterministic
mode, in which addresses are consumed in sequence from a large pre-allocated
array. Since our hash-based cutoff computation uses memory address as part of
the computation, using execution replays from standby states (Sect. 4.1) requires
that we have fully repeatable memory allocation.
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We tackle this problem by decoupling the addresses returned by the emulated
system allocator in the program under test from the system allocator of KLEE
itself. A new allocator requires a large amount of virtual memory in which it
will perform its allocations. This large virtual memory mapping is not actually
used unless an external function call is performed, in which case the relevant
objects are temporarily copied into the region from the symbolic execution state
for which the external function call is to be performed. Afterwards, the pages
are marked for reclamation by the OS. This way, allocations done by different
symbolic execution states return the same address to the program under test.

While a deterministic allocator by itself would be enough for providing deter-
ministic allocation to sequential programs, parallel programs also require an allo-
cation pattern that is independent of which sequentialization of the same partial
order is chosen. We achieve this property by providing independent allocators for
each thread (based on the thread id, thus ensuring that the same virtual mem-
ory mapping is reused for each instance of the same semantic thread). When an
object is deallocated on a different thread than it was allocated on, its address
only becomes available for reuse once the allocating thread has reached a point
in its execution where it is causally dependent on the deallocation. Additionally,
the thread ids that are used by our implementation are hierarchically defined: A
new thread t that is the i-th thread started by its parent thread p has the thread
id t := (p, i), with the main thread being denoted as (1). This way, thread ids and
the associated virtual memory mappings are independent of how the concurrent
creation of multiple threads are sequentialized.

We have also included various optimizations that promote controlled reuse of
addresses to increase the chance that a cutoff event (Sect. 4.2) is found, such as
binning allocations by size, which reduces the chance that temporary allocations
impact which addresses are returned for other allocations.

4.4 Data Race Detection

Our data race detection algorithm simply follows the happens-before relation-
ships established by the POR. However, its implementation is complicated by
the possibility of addresses becoming symbolic. Generally speaking, a symbolic
address can potentially point to any and every byte in the whole address space,
thus requiring frequent and large SMT queries to be solved.

To alleviate the quadratic blowup of possibly aliasing accesses, we exploit
how KLEE performs memory accesses with symbolic addresses: The symbolic
state is forked for every possible memory object that the access may refer to (and
one additional time if the memory access may point to unallocated memory).
Therefore, a symbolic memory access is already resolved to memory object gran-
ularity when it potentially participates in a data race. This drastically reduces
the amount of possible data races without querying the SMT solver.
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4.5 External Function Calls

When a program wants to call a function that is neither provided by the program
itself nor by the runtime, KLEE will attempt to perform an external function call
by moving the function arguments from the symbolic state to its own address
space and attempting to call the function itself. While this support for uninter-
preted functions is helpful for getting some results for programs which are not
fully supported by KLEE’s POSIX runtime, it is also inherently incomplete and
not sound in the general case. Our prototype includes this option as well.

5 Experimental Evaluation

To explore the efficacy of the presented approach, we performed a series of exper-
iments including both synthetic benchmarks from the SV-COMP [9] benchmark
suite and real-world programs, namely, Memcached [3] and GNU sort [1]. We
compare against Yogar-CBMC [49], which is the winner of the concurrency safety
category of SV-COMP 2019 [9], and stands in for the family of bounded model
checkers. As such, Yogar-CBMC is predestined to fare well in the artificial SV-
COMP benchmarks, while our approach may demonstrate its strength in dealing
with more complicated programs.

Table 1. Our prototype and Yogar-CBMC running SV-COMP benchmarks. Timeout
set at 15 min with maximum memory usage of 15GB. Columns are: T: true result,
output matches expected verdict; F: false result, output does not match expected ver-
dict; U: unknown result, tool yields no answer; Time: total time taken; RSS: maximum
resident set size over all benchmarks.

Benchmark Our tool Yogar-CBMC

T F U Time RSS T F U Time RSS

pthread 29 – 9 1:50:19 16 GB 29 – 9 0:31:21 948 MB

pthread-driver-races 16 1 4 1:03:08 6049 MB 21 – – 0:00:12 72 MB

We ran the experiments on a cluster of multiple identical machines with
dual Intel Xeon E5-2643 v4 CPUs and 256 GiB of RAM. We used a 4 h timeout
and 200 GB maximum memory usage for real-world programs. We used a 15 min
timeout and 15 GB maximum memory for individual SV-COMP benchmarks.

5.1 SV-COMP

We ran our tool and Yogar-CBMC on the “pthread” and “pthread-driver-races”
benchmark suites in their newest (2020) incarnation. As expected, Table 1 shows
that Yogar-CBMC clearly outperforms our tool for this specific set of bench-
marks. Not only does Yogar-CBMC not miscategorize even a single benchmark,
it does so quickly and without using a lot of memory. Our tool, in contrast, takes
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significantly more time and memory to analyze the target benchmarks. In fact,
several benchmarks do not complete within the 15 min time frame and therefore
cannot give a verdict for those.

The “pthread-driver-races” benchmark suite contains one benchmark that is
marked as a failure for our tool in Table 1. For the relevant benchmark, a verdict
of “target function unreachable” is expected, which we translate to mean “no
data race occurs”. However, the benchmark program constructs a pointer that
may point to effectively any byte in memory, which, upon dereferencing it, leads
to both, memory errors and data races (by virtue of the pointer also being able
to touch another thread’s stack). While we report this behavior for completeness
sake, we attribute it to the adaptations made to fit the SV-COMP model to ours.

Preparation of Benchmark Suites. The SV-COMP benchmark suite does
not only assume various kinds of special casing (e.g., functions whose name
begins with VERIFIER atomic must be executed atomically), but also routinely
violates the C standard by, for example, employing data races as a control flow
mechanism [25, § 5.1.2.4/35]. Partially, this is because the analysis target is a
question of reachability of a certain part of the benchmark program, not its
correctness. We therefore attempted to guess the intention of the individual
benchmarks, making variables atomic or leaving the data race in when it is the
aim of the benchmark.

5.2 Memcached

Memcached [3] is an in-memory network object cache written in C. As it is a
somewhat large project with a fairly significant state space, we were unable to
analyze it completely, even though our prototype still found several bugs. Our
attempts to run Yogar-CBMC did not succeed, as it reproducibly crashes.

Faults Detected. Our prototype found nine bugs in memcached 1.5.19,
attributable to four different root causes, all of which where previously unknown.
The first bug is a misuse of the pthread API, causing six mutexes and condition
variables to be initialized twice, leading to undefined behavior. We reported2

the issue, a fix is included in version 1.5.20. The second bug occurs during the
initialization of memcached, where fields that will later be accessed in a thread-
safe manner are sometimes accessed in a non-thread-safe manner, assuming that
competing accesses are not yet possible. We reported3 a mistake our tool found in
the initialization order that invalidates the assumption that locking is not (yet)
necessary on one field. A fix ships with memcached 1.5.21. For the third bug,
memcached utilizes a maintenance thread to manage and resize its core hash
table when necessary. Additionally, on another thread, a timer checks whether
the maintenance thread should perform an expansion of the hash table. We

2 https://github.com/memcached/memcached/pull/566.
3 https://github.com/memcached/memcached/pull/575.

https://github.com/memcached/memcached/pull/566
https://github.com/memcached/memcached/pull/575
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found4 a data race between these two threads on a field that stores whether
the maintenance thread has started expanding. This is fixed in version 1.5.20.
The fourth and final issue is a data race on the stats state storing execution
statistics. We reported5 this issue and a fix is included in version 1.5.21.

Experiment. We run our prototype on five different versions of memcached,
the three releases 1.5.19, 1.5.20 and 1.5.21 plus variants of the earlier releases
(1.5.19+ and 1.5.20+) which include patches for the two bugs we found during
program initialization. Those variants are included to show performance when
not restricted by inescapable errors very early in the program execution.

Table 2 shows clearly how the two initialization bugs may lead to very quick
analyses—versions 1.5.19 and 1.5.20 are completely analyzed in 7 s each, while
versions 1.5.19+, 1.5.20+ and 1.5.21 exhaust the memory budget of 200 GB.
We have configured the experiment to stop the analysis once the memory limit
is reached, although the analysis could continue in an incomplete manner by
removing parts of the exploration frontier to free up memory. Even though the
number of error paths in Table 2 differs between configurations, it is notable
that each configuration can only reach exactly one of the bugs, as execution is
arrested at that point. When not restricted to the program initialization, the
analysis of memcached produces hundreds of thousands of events and retires
hundreds of millions of instructions in less than 2 h.

Table 2. Our prototype analyzing various versions of memcached and GNU sort. Time-
out set at 4 h with maximum memory usage of 200GB. Columns are: RSS: maximum
resident set size (swap space is not available); #I: number of instructions executed;
Th: maximum number of threads active at the same time; Σ: total number of events
in the explored unfolding; Mut: number of mutex lock/unlock events; CV: number of
wait1/wait2/signal/broadcast events; λ: number of symbolic choices; Cut: number of
events determined to be cutoffs; and the number of Finished Paths distinguish between
normal termination of the program under test (Exit), detection of an error (Err) and
being cut off (Cut).

Program Performance Th Events Finished Paths Halt

Version LoC Time RSS #I Σ Mut CV λ Cut Exit Err Cut Reason

Memcached 1.5.19 31065 0:00:07 204MB 23K 1 12 6 0 3 0 0 1 0 Finished

1.5.19+ 31051 1:33:42 208GB 1.2B 6 331K 271K 60K 3 24K 0 41K 29K Memory

1.5.20 31093 0:00:07 197MB 92K 2 24 16 0 3 0 0 1 0 Finished

1.5.20+ 31093 1:51:10 207GB 228M 10 745K 742K 2.7K 5 882 0 1 2.6K Memory

1.5.21 31090 1:29:57 207GB 546M 10 1.1M 1.1M 3.1K 3 558 0 0 2.6K Memory

Sort 8.31 86596 0:24:29 23GB 266M 2 1.8M 1.4M 269K 25K 58K 8.0K 4.9K 55K Finished

8.31+ 86599 4:01:39 88GB 1.0B 2 6.9M 5.8M 777K 276K 346K 6.3K 0 285K Time

Our setup delivers a single symbolic packet to memcached followed by a con-
crete shutdown packet. As this packet can obviously only be processed once the
4 https://github.com/memcached/memcached/pull/569.
5 https://github.com/memcached/memcached/pull/573.

https://github.com/memcached/memcached/pull/569
https://github.com/memcached/memcached/pull/573
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server is ready to process input, we observe symbolic choices only after program
startup is complete. (Since our prototype builds on KLEE, note that it assumes
a single symbolic choice during startup, without generating an additional path.)

5.3 GNU sort

GNU sort uses threads for speeding up the sorting of very large workloads. We
reduced the minimum size of input required to trigger concurrent sorting to
four lines to enable the analysis tools to actually trigger concurrent behavior.
Nevertheless, we were unable to avoid crashing Yogar-CBMC on this input.

During analysis of GNU sort 8.31, our prototype detected a data race, that
we manually verified, but were unable to trigger in a harmful manner. Table 2
shows two variants of GNU sort, the baseline version with eager parallelization
(8.31) and a version with added locking to prevent the data race (8.31+).

Surprisingly, version 8.31 finishes the exploration, as all paths either exit,
encounter the data race and are terminated or are cut off. By fixing the data
race in version 8.31+, we make it possible for the exploration to continue beyond
this point, which results in a full 4 h run that retires a full billion instructions
while encountering almost seven million unique events.

6 Related Work

The body of work in systematic concurrency testing [5,6,19,21,23,35,41,47,50]
is large. These approaches explore thread interleavings under a fixed program
input. They prune the search space using context-bounding [34], increasingly
sophisticated PORs [5–7,12,19,23,35,41], or random testing [13,50]. Our main
difference with these techniques is that we handle input data.

Thread-modular abstract interpretation [18,30,33] and unfolding-based
abstract interpretation [46] aim at proving safety rather than finding bugs.
They use over-approximations to explore all behaviors, while we focus on testing
and never produce false alarms. Sequentialization techniques [26,36,40] encode a
multi-threaded program into a sequential one. While these encodings can be very
effective for small programs [26] they grow quickly with large context bounds (5
or more, see [36]). However, some of the bugs found by our technique (Sect. 5)
require many context switches to be reached.

Bounded-model checking [8,15,28,39,49] for multi-threaded programs encode
multiple program paths into a single logic formula, while our technique encodes
a single path. Their main disadvantage is that for very large programs, even
constructing the multi-path formula can be extremely challenging, often pro-
ducing an upfront failure and no result. Conversely, while our approach faces
path explosion, it is always able to test some program paths.

Techniques like [17,27,44] operate on a data structure conceptually very sim-
ilar to our unfolding. They track read/write operations to every variable, which
becomes a liability on very large executions. In contrast, we only use POSIX
synchronization primitives and compactly represent memory accesses to detect
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data races. Furthermore, they do not exploit anything similar to cutoff events
for additional trace pruning.

Interpolation [14,48] and weakest preconditions [24] have been combined with
POR and symbolic execution for property-guided analysis. These approaches are
mostly complementary to PORs like our technique, as they eliminate a different
class of redundant executions [24].

This work builds on top of previous work [35,41,46]. The main contributions
w.r.t. those are: (1) we use symbolic execution instead of concurrency testing [35,
41] or abstract interpretation [46]; (2) we support condition variables, providing
algorithms to compute conflicting extensions for them; and (3) here we use hash-
based fingerprints to compute cutoff events, thus handling much more complex
partial orders than the approach described in [46].

7 Conclusion

Our approach combines POR and symbolic execution to analyze programs w.r.t.
both input (data) and concurrency non-determinism. We model a significant por-
tion of the pthread API, including try-lock operations and robust mutexes. We
introduce two techniques to cope with state-space explosion in real-world pro-
grams. We compute cutoff events by using efficiently-computed fingerprints that
uniquely identify the total state of the program. We restrict scheduling to syn-
chronization points and report data races as errors. Our experiments found pre-
viously unknown bugs in real-world software projects (memcached, GNU sort).
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38. Păsăreanu, C.S., Rungta, N.: Symbolic PathFinder: symbolic execution of Java
bytecode. In: Proceedings of the IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2010, Antwerp, Belgium, pp. 179–180. Associa-
tion for Computing Machinery, September 2010. https://doi.org/10.1145/1858996.
1859035

39. Prabhu, S., Schrammel, P., Srivas, M., Tautschnig, M., Yeolekar, A.: Concurrent
program verification with invariant-guided underapproximation. In: D’Souza, D.,
Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 241–248. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 17

40. Qadeer, S., Wu, D.: KISS: keep it simple and sequential. In: Proceedings of the
ACM SIGPLAN 2004 Conference on Programming Language Design and Imple-
mentation, PLDI 2004, Washington DC, USA, pp. 14–24. Association for Comput-
ing Machinery, June 2004. https://doi.org/10.1145/996841.996845
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