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ABSTRACT

The memory allocator can have an important impact in symbolic

execution. Taking a user-centric view, this tool demonstration pa-

per discusses some of the main benefits provided by KLEE’s new

allocator KDAlloc in terms of improved deterministic execution

and bug-finding capabilities. We then introduce a new replay tool

for KLEE which enables the native execution to integrate KDAlloc

and receive the same heap addresses as during symbolic execution.
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1 INTRODUCTION

Symbolic execution [2, 6, 7] is a technique that systematically ex-

plores possible execution paths of a software under test (SUT) and

automatically generates test inputs for some of them, e.g. paths that

reached new coverage or exposed a program error. A variant of

this technique is dynamic symbolic execution [3], where the non-

symbolic operations in the SUT are executed normally and all side

effects, such as memory allocations and file writes, are (typically)

observable on the host system.
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KLEE [1] is a well-known dynamic symbolic execution engine

which, at a high level, works as a symbolic interpreter for SUTs

compiled to LLVM [9] bitcode. KLEE explores paths incrementally,

and usually has several execution paths under exploration at the

same time. In this work, we see a path as characterised by the

sequence of branch decisions that depend on symbolic input.

Memory allocation in symbolic execution can have an important

impact in terms of execution determinism and bug-finding capa-

bilities. Regarding the former, we note that the execution of some

programs depends on the addresses returned by the allocator. Such

programs are quite common—for instance, addresses are often used

as keys in hash tables and other data structures.

The default memory allocator in KLEE works in such a way that

all execution paths, together with the KLEE engine itself, share the

same address space, served by the same general-purpose allocator.

This design has several consequences. First, multiple similar

runs of KLEE could behave differently, depending on the addresses

returned by the allocator—for example, different addresses may

render the previous sequence of symbolic branch decisions for a

path infeasible, if a branch decision depends on such an address.

Second, the execution of a particular path may be influenced by

the execution of other paths, e.g. if a path A is executed before a path

B, it would receive different addresses from the allocator than if it is

executed after path B, which, as explained before, may change the

feasibility of previous symbolic branch decisions on path A. This

also means that changing the search heuristic may change the set

of explored paths, even if all feasible paths are explored.

The resulting non-determinism is undesirable. In particular, it

makes debugging difficult, as a path running in isolation might

behave differently than in the presence of other paths. Non-deter-

minism can also lead similar paths to behave differently, as common

objects may be allocated at different addresses.

Memory allocation can also have an important impact on the bug-

finding capabilities of a symbolic execution tool. This is because

general-purpose allocators are not designed to enforce properties

desirable for dynamic symbolic execution, such as spatial and tem-

poral distancing to find certain classes of memory errors.

To address these issues, we have recently designedKDAlloc [12],

which allocates a large amount of virtual memory and distributes

allocations throughout that area. Importantly, each state (the rep-

resentation of a path in KLEE) is given its separate state virtual

address space [12], enabling KLEE to isolate states from one another

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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and behave deterministically across runs. In addition, KDAlloc

spatially distances allocations to ensure large inter-object redzones,

and temporally distances allocations using a tunable quarantine.

These features increase the chance of finding buffer overflows and

respectively use-after-free errors. Further details on KDAlloc’s

design can be found in the paper that introduced it [12].

While the original KDAlloc paper focuses on the symbolic exe-

cution stage, similar problems related to allocator non-determinism

are encountered when replaying the inputs generated by KLEE

on a native version of the SUT. For each explored path, KLEE can

generate a test input which is guaranteed to follow that path, under

the assumption that the same addresses are returned by the allocator.

In this paper, we show how KDAlloc can be effectively inte-

grated into the replay process. This allows replayed executions to

receive the same heap addresses1 as during symbolic execution,

improving bug reproducibility and making debugging easier. The

improved replay support is a unique contribution of this paper.

This tool paper is focused on the practical use of KDAlloc,

targeting KLEE users interested in using KDAlloc during symbolic

execution or replay. We are actively merging the contributions of

this paper into mainline KLEE [8]. Until that point, we maintain a

fork at https://github.com/srg-imperial/kdalloc-issta-2023.

2 DETERMINISTIC SYMBOLIC EXECUTION

Wewill illustrate some of the benefits of using KDAllocwith the

example in Figure 1. Its code implements a randomised treap [4].

Each node has associated a key (in our case the C string being

inserted into the treap, line 3) and a priority (in our case a 64-bit

integer, computed by hashing the address of the node, lines 6 to 11).

The keys form a binary search tree, while the priorities form a

min-heap—priorities are used to ensure that the height of the tree

is logarithmic in the number of nodes with a high probability.

On every insertion, both structures of the treap are maintained:

Following a binary-search-tree insert of the key (comparison in

line 18, recursive calls in line 20 and line 28), the heap criterion is

fixed up using tree rotations (lines 21 to 26 and lines 29 to 34).

The main program starts by inserting three strings into the treap:

"1", "2", and "3" (lines 40 to 42). Suppose the developer mistakenly

assumes that the tree’s root should always be the node with the key

"1", and thus adds the assert on line 43. In practice, this situation

could easily result from the developer not understanding a data

structure as deeply as they thought.

This program has non-deterministic behaviour: The bug is trig-

gered depending on the addresses of the allocated nodes. Due to

address space layout randomisation (ASLR), both native execution

and execution with KLEE are non-deterministic with the respective

default allocators. This makes it difficult to understand, replay and

debug the issue. KDAlloc addresses this issue by eliminating this

source of non-determinism in repeated runs and during replay.2

At its most basic, usingKLEEwithKDAlloc just requires passing

the --kdalloc option:

$ klee --kdalloc treap.bc

...

1Divergences can also be caused by non-heap addresses, but these are less common.
2Wenote that a user might want to runKLEEmultiple times, under different allocations,
to maximise their chances of finding the bug. KDAlloc could readily facilitate such
runs, by using it to run KLEE deterministically with different base addresses.

1 struct node {

2 struct node *lhs, *rhs;

3 char const *key;

4 }* root = NULL;

5

6 static uint64_t priority(void *p) {

7 uint64_t h = 0xcbf29ce484222325;

8 for (size_t i = 0; i < sizeof(p); ++i)

9 h = (h ^ ((unsigned char*)&p)[i]) * 0x100000001b3;

10 return h;

11 }

12

13 void insert(struct node **n, char const *str) {

14 if (!*n) {

15 *n = calloc(1, sizeof(struct node));

16 (*n)->key = str;

17 } else {

18 int cmp = strcmp(str, (*n)->key);

19 if (cmp < 0) {

20 insert(&(*n)->lhs, str);

21 if (priority((*n)->lhs) < priority(*n)) {

22 struct node *lhs = (*n)->lhs;

23 (*n)->lhs = lhs->rhs;

24 lhs->rhs = (*n);

25 *n = lhs;

26 }

27 } else if (cmp > 0) {

28 insert(&(*n)->rhs, str);

29 if (priority((*n)->rhs) < priority(*n)) {

30 struct node *rhs = (*n)->rhs;

31 (*n)->rhs = rhs->lhs;

32 rhs->lhs = (*n);

33 *n = rhs;

34 }

35 }

36 }

37 }

38

39 int main() {

40 insert(&root, strdup("1"));

41 insert(&root, strdup("2"));

42 insert(&root, strdup("3"));

43 assert(strcmp(root->key, "1") == 0);

44 }

Figure 1: Treap program used to illustrate the benefits of

KDAlloc. For conciseness, include statements are omitted.

KLEE: Deterministic allocator: globals

(start-address=0x7f6c6ce00000 size=10 GiB)

KLEE: Deterministic allocator: constants

(start-address=0x7f69ece00000 size=10 GiB)

KLEE: Deterministic allocator: heap

(start-address=0x7e69ece00000 size=1024 GiB)

KLEE: Deterministic allocator: stack

(start-address=0x7e49ece00000 size=128 GiB)

...
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This will run KLEE with the KDAlloc deterministic allocator,

but the base addresses used for the different memory sections (heap,

stack, etc. ) are not deterministic from run to run (cross-run). Instead,

the base addresses are decided by the operating system and the

allocation is deterministic from that point onwards. We chose this

default, as any fixed start address may at times conflict with the

memory layout of the KLEE process, as decided by the OS.

Consequently, the program in Figure 1 will encounter the bug in

some runs and run to completion in others. To achieve full cross-run

determinism, the base addresses for the different memory sections

need to be specified. The easiest way to pick these values is to per-

form one run without setting the addresses explicitly and to reuse

the values chosen by the OS for the following runs. A more robust,

but slightly more complicated technique is to instead choose values

that are not likely to be blocked by other mappings after ASLR. For

the default KDAlloc sizes, on 64-bit Linux, using addresses in the

0x610000000000 to 0x640000000000 range seems fairly robust:

$ klee --kdalloc \

--kdalloc-constants-start-address=0x610000000000 \

--kdalloc-globals-start-address=0x620000000000 \

--kdalloc-heap-start-address=0x640000000000 \

--kdalloc-stack-start-address=0x630000000000 \

treap.bc

The default sizes used by the allocators may seem exorbitantly

large at 10GiB for the globals and constants to 1 TiB for the heap,

but KDAlloc only maps virtual memory without any physical back-

ing. With roughly 2
48−1 B = 128 TiB virtual address space available

on current x86_64 CPUs for userspace processes, we have found

that, if desired, the heap size can usually be increased to around

80 TiB. KLEE only actually uses a part of this address range for

external function calls [12], and periodically releases the physi-

cal pages again. As this process can become somewhat expensive

when executed often, it is only initiated once at least 1024 super-

fluous pages (tunable via --kdalloc-external-page-threshold)

are backed with physical pages during an external function call and

the number of backed pages is at least twice the average number of

recently used pages. The whole process can also be disabled with

--kdalloc-mark-as-unneeded=false, if the program under test

does not consume large quantities of addresses including due to

the quarantine (KDAlloc’s quarantine is described in §4).

3 DETERMINISTIC REPLAY

If KLEE reports an issue, ideally the root cause is immediately

obvious. However, developers often find it useful to debug the issue

by replaying the test input generated by KLEE with a native version

of the SUT. For programs whose execution depends on the memory

layout, in order to be useful, replay must be deterministic and use

the same addresses as during symbolic execution.

Returning to our running example of Figure 1, suppose that

instead of inserting the strings "2" and "3" at lines 41 to 42, it

instead inserts two bytes read from a symbolic stdin (KLEE pro-

vides support for a symbolic stdin stream). Given this modified

program, KLEE (with LLVM 14) explores 14 paths through the code,

depending on the values of the two bytes (in the next command,

--libc tells KLEE to load a C standard library, --posix-runtime

to enable support for a symbolic stdin, among other features,

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main() {

5 int *x = malloc(sizeof(int));

6 *x = 1;

7 free(x); // Bug: object freed too early

8 int *y = malloc(sizeof(int));

9 *y = 2;

10 printf("%p:␣%d\n%p:␣%d\n", x, *x, y, *y);

11 free(y);

12 }

Figure 2: Program with a simple use-after-free bug which is

reliably found by KDAlloc configured with a quarantine.

--emit-all-errors to create tests for all errors, even if they are at

the same line of code, and --sym-stdin 2 to return two symbolic

bytes from stdin):

$ klee --libc=uclibc --posix-runtime --emit-all-errors \

treap-sym.bc --sym-stdin 2

...

KLEE: done: generated tests = 14

Because execution depends on the memory addresses returned

by the allocator, KLEE may or may not find the bug. However,

suppose it does and the user tries to replay the input generated by

KLEE to debug the issue. The existing replay tool provided by KLEE,

called klee-replay, uses the default allocator, which is likely to

return different addresses than during symbolic execution. This in

turn may cause the replayed execution not to hit the bug anymore.

To prevent such issues, we have enhanced klee-replay to in-

corporate KDAlloc and use the same addresses as during symbolic

execution. To make this work, we modified KLEE to record the

base addresses used by KDAlloc during symbolic execution in a

file called klee.kconfig. The replay tool then reads the recorded

addresses and integrates KDAlloc before replaying the inputs.

Assuming the error-triggering input generated by KLEE is in file

klee-last/test000001.ktest, we can simply run the following

command to reproduce the error:

$ klee-replay klee-last/test000001.ktest ./treap

In order to provide the same addresses as during symbolic execu-

tion, klee-replay uses LD_PRELOAD to inject libKDAlloc.so into

the target process. The injected library contains a malloc intercep-

tor similar to those enabling the use of alternative memory alloca-

tors, such as jemalloc [5]. Our enhanced version of klee-replay

searches for the klee.kconfig file in the directory of the test case

by default, so we do not need to explicitly specify its location here.

4 USE-AFTER-FREE ERROR DETECTION

Quarantines delay the reuse of freed addresses to increase the

chance of finding use-after-free errors [10, 13]. That is, instead of

freeing an object so that the allocator can reuse its memory, it is

instead placed into a quarantine. Only when the quarantine fills up,

does memory start to be reused in a first-in first-out fashion.
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Consider the program in Figure 2, which shows a simple use-

after-free bug. Many general-purpose allocators will prefer to reuse

freed addresses as soon as possible, to optimise cache locality. This

immediate address reuse can hide the bug during analysis with

KLEE, if run with the default allocator, as no unallocated address is

ever accessed:

$ klee uaf.bc

...

0x55d87e308208: 2

0x55d87e308208: 2

...

Even if memory does not get reused, without a quarantine KLEE

would report such a use-after-free bug as a buffer overflow, which

can be confusing to users. By contrast, KLEE configured with

quarantine-enabled KDAlloc can reliably find the bug in Figure 2

and report it properly as a use-after-free error:

$ klee --kdalloc uaf.bc

...

KLEE: Deterministic allocator: Using quarantine queue size 8

...

KLEE: ERROR: uaf.c:10: memory error: use after free

...

Unless specified otherwise, KDAlloc runs with a quarantine

of eight objects per allocation bin. Allocation bins store objects of

certain sizes (e.g., one bin stores 1 B objects, another bin objects

between 2 B and 4 B, and so on in powers of two up to objects of

2048 B), with a large object bin managing objects larger than 2048 B.

For example, the program quarantine.bc allocates and immedi-

ately deallocates a one-byte object ten times, and prints all addresses

it receives:

$ klee --kdalloc quarantine.bc

...

Allocated addresses: 0x7ee436400000 0x7ee036400000

0x7ee836400000 0x7ede36400000 0x7eea36400000

0x7ee236400000 0x7ee636400000 0x7edd36400000

0x7eeb36400000 0x7ee436400000

...

As can be seen, KDAlloc’s quarantine of eight 1 B objects guar-

antees that the program will receive different addresses (blue) for

the first eight 1 B allocations. After the eighth allocation, the quar-

antine has filled up and addresses start to be reused (red).

If temporal distancing is not a concern, memory usage can be

reduced by disabling the quarantine:

$ klee --kdalloc --kdalloc-quarantine=0 quarantine.bc

...

Allocated addresses: 0x7e7f5d600000 0x7e7f5d600000

0x7e7f5d600000 0x7e7f5d600000 0x7e7f5d600000

0x7e7f5d600000 0x7e7f5d600000 0x7e7f5d600000

0x7e7f5d600000 0x7e7f5d600000

...

On the other hand, if sufficient memory is available, the quar-

antine size can be increased. If users find it difficult to determine

the right quarantine size, instead of setting a very high size, it can

be faster and more memory efficient to set the quarantine size to

unlimited (-1). Using an unlimited quarantine engages additional

optimisations that reduce memory usage compared to a large but

finite quarantine size, as no addresses can ever be reused:

$ klee --kdalloc --kdalloc-quarantine=-1 quarantine.bc

...

Allocated addresses: 0x7e5d7a800000 0x7e597a800000

0x7e617a800000 0x7e577a800000 0x7e637a800000

0x7e5b7a800000 0x7e5f7a800000 0x7e567a800000

0x7e647a800000 0x7e587a800000

...

5 RELATED WORK

KLEE previously included a deterministic allocator that similarly al-

located a memory range with a specifiable base address [8]. Among

many other differences [12], that allocator never freed memory,

making it unusable for many programs.

The quarantine is an established concept for memory allocators,

and has been used in several prior projects [10, 11, 13].

More generally, memory allocators have been well-studied in

research and practice. We refer the reader to our research paper on

KDAlloc [12] for a more extensive discussion of related work.

6 CONCLUSION

KDAlloc, the new memory allocator for KLEE, is a tunable, deter-

ministic memory allocator purposely designed to support symbolic

execution. Taking a user-centric view, we have discussed some of

the main benefits of KDAlloc, and introduced a new replay func-

tionality that can replay KLEE-generated inputs using the same

heap layout. We believe that KDAlloc is a valuable tool for anyone

using KLEE, and plan to make it the default choice soon.
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